Quantum teleportation - Wikipedia
文章推薦指數: 80 %
Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. Quantumteleportation FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Physicalphenomenon Quantumteleportationisatechniquefortransferringquantuminformationfromasenderatonelocationtoareceiversomedistanceaway.Whileteleportationiscommonlyportrayedinsciencefictionasameanstotransferphysicalobjectsfromonelocationtothenext,quantumteleportationonlytransfersquantuminformation.Thesenderdoesnothavetoknowtheparticularquantumstatebeingtransferred.Moreover,thelocationoftherecipientcanbeunknown,butclassicalinformationneedstobesentfromsendertoreceivertocompletetheteleportation.Becauseclassicalinformationneedstobesent,teleportationcannotoccurfasterthanthespeedoflight. Oneofthefirstscientificarticlestoinvestigatequantumteleportationis"TeleportinganUnknownQuantumStateviaDualClassicalandEinstein-Podolsky-RosenChannels"[1]publishedbyC.H.Bennett,G.Brassard,C.Crépeau,R.Jozsa,A.Peres,andW.K.Woottersin1993,inwhichtheyuseddualcommunicationmethodstosend/receivequantuminformation.Itwasexperimentallyrealizedin1997bytworesearchgroups,ledbySanduPopescuandAntonZeilinger,respectively.[2][3] Experimentaldeterminations[4][5]ofquantumteleportationhavebeenmadeininformationcontent-includingphotons,atoms,electrons,andsuperconductingcircuits-aswellasdistancewith1,400 km(870 mi)beingthelongestdistanceofsuccessfulteleportationbythegroupofJian-WeiPanusingtheMiciussatelliteforspace-basedquantumteleportation.[6] Contents 1Non-technicalsummary 2Protocol 3Experimentalresultsandrecords 3.1Quantumteleportationover143km 3.2QuantumteleportationacrosstheDanubeRiver 3.3Deterministicquantumteleportationwithatoms 3.4Ground-to-satellitequantumteleportation 4Formalpresentation 5Alternativenotations 6Entanglementswapping 6.1AlgorithmforswappingBellpairs 7Generalizationsoftheteleportationprotocol 7.1d-dimensionalsystems 7.2Multipartiteversions 8Logicgateteleportation 8.1Generaldescription 8.2Furtherdetails 9Localexplanationofthephenomenon 10Recentdevelopments 10.1Higherdimensions 10.2Informationquality 11Seealso 12References 12.1Specific 12.2General 13Externallinks Non-technicalsummary[edit] DiagramoftheBasicComponentsUsedforQuantumTeleportation Inmattersrelatingtoquantuminformationtheory,itisconvenienttoworkwiththesimplestpossibleunitofinformation:thetwo-statesystemofthequbit.Thequbitfunctionsasthequantumanalogoftheclassiccomputationalpart,thebit,asitcanhaveameasurementvalueofbotha0anda1,whereastheclassicalbitcanonlybemeasuredasa0ora1.Thequantumtwo-statesystemseekstotransferquantuminformationfromonelocationtoanotherlocationwithoutlosingtheinformationandpreservingthequalityofthisinformation.Thisprocessinvolvesmovingtheinformationbetweencarriersandnotmovementoftheactualcarriers,similartothetraditionalprocessofcommunications,astwopartiesremainstationarywhiletheinformation(digitalmedia,voice,text,etc.)isbeingtransferred,contrarytotheimplicationsoftheword"teleport." Themaincomponentsneededforteleportationincludeasender,theinformation(aqubit),atraditionalchannel,aquantumchannel,andareceiver.Aninterestingfactisthatthesenderdoesnotneedtoknowtheexactcontentsoftheinformationthatisbeingsent.Themeasurementpostulateofquantummechanics—whenameasurementismadeuponaquantumstate,anysubsequentmeasurementswill"collapse"orthattheobservedstatewillbelost—createsanimpositionwithinteleportation:ifasendermakesameasurementontheirinformation,thestatecouldcollapsewhenthereceiverobtainstheinformationsincethestatehaschangedfromwhenthesendermadetheinitialmeasurement. Foractualteleportation,itisrequiredthatanentangledquantumstateorBellstatebecreatedforthequbittobetransferred.Entanglementimposesstatisticalcorrelationsbetweenotherwisedistinctphysicalsystemsbycreatingorplacingtwoormoreseparateparticlesintoasingle,sharedquantumstate.Thisintermediatestatecontainstwoparticleswhosequantumstatesaredependentoneachotherastheyformaconnection:ifoneparticleismoved,theotherparticlewillmovealongwithit.Anychangesthatoneparticleoftheentanglementundergoes,theotherparticlewillalsoundergothatchange,causingtheentangledparticlestoactasonequantumstate.Thesecorrelationsholdevenwhenmeasurementsarechosenandperformedindependently,outofcausalcontactfromoneanother,asverifiedinBelltestexperiments.Thus,anobservationresultingfromameasurementchoicemadeatonepointinspacetimeseemstoinstantaneouslyaffectoutcomesinanotherregion,eventhoughlighthasn'tyethadtimetotravelthedistance;aconclusionseeminglyatoddswithspecialrelativity.ThisisknownastheEPRparadox.Howeversuchcorrelationscanneverbeusedtotransmitanyinformationfasterthanthespeedoflight,astatementencapsulatedintheno-communicationtheorem.Thus,teleportationasawholecanneverbesuperluminal,asaqubitcannotbereconstructeduntiltheaccompanyingclassicalinformationarrives. Thesenderwillthenpreparetheparticle(orinformation)inthequbitandcombinewithoneoftheentangledparticlesoftheintermediatestate,causingachangeoftheentangledquantumstate.Thechangedstateoftheentangledparticleisthensenttoananalyzerthatwillmeasurethischangeoftheentangledstate.The"change"measurementwillallowthereceivertorecreatetheoriginalinformationthatthesenderhadresultingintheinformationbeingteleportedorcarriedbetweentwopeoplethathavedifferentlocations.Sincetheinitialquantuminformationis"destroyed"asitbecomespartoftheentanglementstate,theno-cloningtheoremismaintainedastheinformationisrecreatedfromtheentangledstateandnotcopiedduringteleportation. Thequantumchannelisthecommunicationmechanismthatisusedforallquantuminformationtransmissionandisthechannelusedforteleportation(relationshipofquantumchanneltotraditionalcommunicationchannelisakintothequbitbeingthequantumanalogoftheclassicalbit).However,inadditiontothequantumchannel,atraditionalchannelmustalsobeusedtoaccompanyaqubitto"preserve"thequantuminformation.Whenthechangemeasurementbetweentheoriginalqubitandtheentangledparticleismade,themeasurementresultmustbecarriedbyatraditionalchannelsothatthequantuminformationcanbereconstructedandthereceivercangettheoriginalinformation.Becauseofthisneedforthetraditionalchannel,thespeedofteleportationcanbenofasterthanthespeedoflight(hencetheno-communicationtheoremisnotviolated).ThemainadvantagewiththisisthatBellstatescanbesharedusingphotonsfromlasersmakingteleportationachievablethroughopenspacehavingnoneedtosendinformationthroughphysicalcablesoropticalfibers. Quantumstatescanbeencodedinvariousdegreesoffreedomofatoms.Forexample,qubitscanbeencodedinthedegreesoffreedomofelectronssurroundingtheatomicnucleusorinthedegreesoffreedomofthenucleusitself.Thus,performingthiskindofteleportationrequiresastockofatomsatthereceivingsite,availableforhavingqubitsimprintedonthem.[7] Asof2015,[update]thequantumstatesofsinglephotons,photonmodes,singleatoms,atomicensembles,defectcentersinsolids,singleelectrons,andsuperconductingcircuitshavebeenemployedasinformationbearers.[8] Understandingquantumteleportationrequiresagoodgroundinginfinite-dimensionallinearalgebra,Hilbertspacesandprojectionmatrixes.Aqubitisdescribedusingatwo-dimensionalcomplexnumber-valuedvectorspace(aHilbertspace),whicharetheprimarybasisfortheformalmanipulationsgivenbelow.Aworkingknowledgeofquantummechanicsisnotabsolutelyrequiredtounderstandthemathematicsofquantumteleportation,althoughwithoutsuchacquaintance,thedeepermeaningoftheequationsmayremainquitemysterious. Protocol[edit] Diagramforquantumteleportationofaphoton Theresourcesrequiredforquantumteleportationareacommunicationchannelcapableoftransmittingtwoclassicalbits,ameansofgeneratinganentangledBellstateofqubitsanddistributingtotwodifferentlocations,performingaBellmeasurementononeoftheBellstatequbits,andmanipulatingthequantumstateoftheotherqubitfromthepair.Ofcourse,theremustalsobesomeinputqubit(inthequantumstate | ϕ ⟩ {\displaystyle|\phi\rangle} )tobeteleported.Theprotocolisthenasfollows: ABellstateisgeneratedwithonequbitsenttolocationAandtheothersenttolocationB. ABellmeasurementoftheBellstatequbitandthequbittobeteleported( | ϕ ⟩ {\displaystyle|\phi\rangle} )isperformedatlocationA.Thisyieldsoneoffourmeasurementoutcomeswhichcanbeencodedintwoclassicalbitsofinformation.BothqubitsatlocationAarethendiscarded. Usingtheclassicalchannel,thetwobitsaresentfromAtoB.(Thisistheonlypotentiallytime-consumingstepafterstep1sinceinformationtransferislimitedbythespeedoflight.) AsaresultofthemeasurementperformedatlocationA,theBellstatequbitatlocationBisinoneoffourpossiblestates.Ofthesefourpossiblestates,oneisidenticaltotheoriginalquantumstate | ϕ ⟩ {\displaystyle|\phi\rangle} ,andtheotherthreearecloselyrelated.TheidentityofthestateactuallyobtainedisencodedintwoclassicalbitsandsenttolocationB.TheBellstatequbitatlocationBisthenmodifiedinoneofthreeways,ornotatall,whichresultsinaqubitidenticalto | ϕ ⟩ {\displaystyle|\phi\rangle} ,thestateofthequbitthatwaschosenforteleportation. Itisworthnoticingthattheaboveprotocolassumesthatthequbitsareindividuallyaddressable,meaningthatthequbitsaredistinguishableandphysicallylabeled.However,therecanbesituationswheretwoidenticalqubitsareindistinguishableduetothespatialoverlapoftheirwavefunctions.Underthiscondition,thequbitscannotbeindividuallycontrolledormeasured.Nevertheless,ateleportationprotocolanalogoustothatdescribedabovecanstillbe(conditionally)implementedbyexploitingtwoindependentlypreparedqubits,withnoneedofaninitialBellstate.Thiscanbemadebyaddressingtheinternaldegreesoffreedomofthequbits(e.g.,spinsorpolarizations)byspatiallylocalizedmeasurementsperformedinseparatedregionsAandBsharedbythewavefunctionsofthetwoindistinguishablequbits.[9] Experimentalresultsandrecords[edit] Workin1998verifiedtheinitialpredictions,[2]andthedistanceofteleportationwasincreasedinAugust2004to600meters,usingopticalfiber.[10]Subsequently,therecorddistanceforquantumteleportationhasbeengraduallyincreasedto16kilometres(9.9 mi),[11]thento97 km(60 mi),[12]andisnow143 km(89 mi),setinopenairexperimentsintheCanaryIslands,donebetweenthetwoastronomicalobservatoriesoftheInstitutodeAstrofísicadeCanarias.[13]Therehasbeenarecentrecordset(asofSeptember 2015[update])usingsuperconductingnanowiredetectorsthatreachedthedistanceof102 km(63 mi)overopticalfiber.[14]Formaterialsystems,therecorddistanceis21metres(69 ft).[15] Avariantofteleportationcalled"open-destination"teleportation,withreceiverslocatedatmultiplelocations,wasdemonstratedin2004usingfive-photonentanglement.[16]Teleportationofacompositestateoftwosinglequbitshasalsobeenrealized.[17]InApril2011,experimentersreportedthattheyhaddemonstratedteleportationofwavepacketsoflightuptoabandwidthof10 MHzwhilepreservingstronglynonclassicalsuperpositionstates.[18][19]InAugust2013,theachievementof"fullydeterministic"quantumteleportation,usingahybridtechnique,wasreported.[20]On29May2014,scientistsannouncedareliablewayoftransferringdatabyquantumteleportation.Quantumteleportationofdatahadbeendonebeforebutwithhighlyunreliablemethods.[21][22]On26February2015,scientistsattheUniversityofScienceandTechnologyofChinainHefei,ledbyChao-yangLuandJian-WeiPancarriedoutthefirstexperimentteleportingmultipledegreesoffreedomofaquantumparticle.Theymanagedtoteleportthequantuminformationfromensembleofrubidiumatomstoanotherensembleofrubidiumatomsoveradistanceof150metres(490 ft)usingentangledphotons.[23][24][25]In2016,researchersdemonstratedquantumteleportationwithtwoindependentsourceswhichareseparatedby6.5 km(4.0 mi)inHefeiopticalfibernetwork.[26]InSeptember2016,researchersattheUniversityofCalgarydemonstratedquantumteleportationovertheCalgarymetropolitanfibernetworkoveradistanceof6.2 km(3.9 mi).[27]InDecember2020,aspartoftheINQNETcollaboration,researchersachievedquantumteleportationoveratotaldistanceof44 km(27.3 mi)withfidelitiesexceeding90%.[28][29] Researchershavealsosuccessfullyusedquantumteleportationtotransmitinformationbetweencloudsofgasatoms,notablebecausethecloudsofgasaremacroscopicatomicensembles.[30][31] Itisalsopossibletoteleportlogicaloperations,seequantumgateteleportation.In2018,physicistsatYaledemonstratedadeterministicteleportedCNOToperationbetweenlogicallyencodedqubits.[32] Firstproposedtheoreticallyin1993,quantumteleportationhassincebeendemonstratedinmanydifferentguises.Ithasbeencarriedoutusingtwo-levelstatesofasinglephoton,asingleatomandatrappedion–amongotherquantumobjects–andalsousingtwophotons.In1997,twogroupsexperimentallyachievedquantumteleportation.Thefirstgroup,ledbySanduPopescu,wasbasedoutItaly.AnexperimentalgroupledbyAntonZeilingerfollowedafewmonthslater. TheresultsobtainedfromexperimentsdonebyPopescu'sgroupconcludedthatclassicalchannelsalonecouldnotreplicatetheteleportationoflinearlypolarizedstateandanellipticallypolarizedstate.TheBellstatemeasurementdistinguishedbetweenthefourBellstates,whichcanallowfora100%successrateofteleportation,inanidealrepresentation.[33] Zeilinger'sgroupproducedapairofentangledphotonsbyimplementingtheprocessofparametricdown-conversion.Inordertoensurethatthetwophotonscannotbedistinguishedbytheirarrivaltimes,thephotonsweregeneratedusingapulsedpumpbeam.Thephotonswerethensentthroughnarrow-bandwidthfilterstoproduceacoherencetimethatismuchlongerthanthelengthofthepumppulse.Theythenusedatwo-photoninterferometryforanalyzingtheentanglementsothatthequantumpropertycouldberecognizedwhenitistransferredfromonephotontotheother.[3] Photon1waspolarizedat45°inthefirstexperimentconductedbyZeilinger'sgroup.Quantumteleportationisverifiedwhenbothphotonsaredetectedinthe | Ψ − ⟩ 12 {\displaystyle|\Psi^{-}\rangle_{12}} state,whichhasaprobabilityof25%.Twodetectors,f1andf2,areplacedbehindthebeamsplitter,andrecordingthecoincidencewillidentifythe | Ψ − ⟩ 12 {\displaystyle|\Psi^{-}\rangle_{12}} state.Ifthereisacoincidencebetweendetectorsf1andf2,thenphoton3ispredictedtobepolarizedata45°angle.Photon3ispassedthroughapolarizingbeamsplitterthatselects+45°and-45°polarization.Ifquantumteleportationhashappened,onlydetectord2,whichisatthe+45°output,willregisteradetection.Detectord1,locatedatthe-45°output,willnotdetectaphoton.Ifthereisacoincidencebetweend2f1f2,withthe45°analysis,andalackofad1f1f2coincidence,with-45°analysis,itisproofthattheinformationfromthepolarizedphoton1hasbeenteleportedtophoton3usingquantumteleportation.[3] Quantumteleportationover143km[edit] Zeilinger'sgroupdevelopedanexperimentusingactivefeed-forwardinrealtimeandtwofree-spaceopticallinks,quantumandclassical,betweentheCanaryIslandsofLaPalmaandTenerife,adistanceofover143kilometers.Inordertoachieveteleportation,afrequency-uncorrelatedpolarization-entangledphotonpairsource,ultra-low-noisesingle-photondetectorsandentanglementassistedclocksynchronizationwereimplemented.Thetwolocationswereentangledtosharetheauxiliarystate:[12] | Ψ − ⟩ 23 = 1 √ 2 ( ( | H ⟩ 2 | V ⟩ 3 ) − ( | V ⟩ 2 | H ⟩ 3 ) ) {\displaystyle|\Psi^{-}\rangle_{23}={\frac{1}{\surd2}}((|H\rangle_{2}|V\rangle_{3})-(|V\rangle_{2}|H\rangle_{3}))} LaPalmaandTenerifecanbecomparedtothequantumcharactersAliceandBob.AliceandBobsharetheentangledstateabove,withphoton2beingwithAliceandphoton3beingwithBob.Athirdparty,Charlie,providesphoton1(theinputphoton)whichwillbeteleportedtoAliceinthegeneralizedpolarizationstate: | ϕ ⟩ 1 = α | H ⟩ 1 + β | V ⟩ 1 {\displaystyle|\phi\rangle_{1}=\alpha|H\rangle_{1}+\beta|V\rangle_{1}} wherethecomplexnumbers α {\displaystyle\alpha} and β {\displaystyle\beta} areunknowntoAliceorBob. AlicewillperformaBell-statemeasurement(BSM)thatrandomlyprojectsthetwophotonsontooneofthefourBellstateswitheachonehavingaprobabilityof25%.Photon3willbeprojectedonto | ϕ ⟩ {\displaystyle|\phi\rangle} ,theinputstate.AlicetransmitstheoutcomeoftheBSMtoBob,viatheclassicalchannel,whereBobisabletoapplythecorrespondingunitaryoperationtoobtainphoton3intheinitialstateofphoton1.Bobwillnothavetodoanythingifhedetectsthe | ψ − ⟩ 12 {\displaystyle|\psi^{-}\rangle_{12}} state.Bobwillneedtoapplya π {\displaystyle\pi} phaseshifttophoton3betweenthehorizontalandverticalcomponentifthe | ψ + ⟩ 12 {\displaystyle|\psi^{+}\rangle_{12}} stateisdetected.[12] TheresultsofZeilinger'sgroupconcludedthattheaveragefidelity(overlapoftheidealteleportedstatewiththemeasureddensitymatrix)was0.863withastandarddeviationof0.038.Thelinkattenuationduringtheirexperimentsvariedbetween28.1 dBand39.0 dB,whichwasaresultofstrongwindsandrapidtemperaturechanges.Despitethehighlossinthequantumfree-spacechannel,theaveragefidelitysurpassedtheclassicallimitof2/3.Therefore,Zeilinger'sgroupsuccessfullydemonstratedquantumteleportationoveradistanceof143 km.[12] QuantumteleportationacrosstheDanubeRiver[edit] In2004,aquantumteleportationexperimentwasconductedacrosstheDanubeRiverinVienna,atotalof600meters.An800-meter-longopticalfiberwirewasinstalledinapublicsewersystemunderneaththeDanubeRiver,anditwasexposedtotemperaturechangesandotherenvironmentalinfluences.AlicemustperformajointBellstatemeasurement(BSM)onphotonb,theinputphoton,andphotonc,herpartoftheentangledphotonpair(photonscandd).Photond,Bob'sreceiverphoton,willcontainalloftheinformationontheinputphotonb,exceptforaphaserotationthatdependsonthestatethatAliceobserved.Thisexperimentimplementedanactivefeed-forwardsystemthatsendsAlice'smeasurementresultsviaaclassicalmicrowavechannelwithafastelectro-opticalmodulatorinordertoexactlyreplicateAlice'sinputphoton.Theteleportationfidelityobtainedfromthelinearpolarizationstateat45°variedbetween0.84and0.90,whichiswellabovetheclassicalfidelitylimitof0.66.[10] Deterministicquantumteleportationwithatoms[edit] Threequbitsarerequiredforthisprocess:thesourcequbitfromthesender,theancillaryqubit,andthereceiver'stargetqubit,whichismaximallyentangledwiththeancillaryqubit.Forthisexperiment, Ca + 40 {\displaystyle{\ce{^{40}Ca+}}} ionswereusedasthequbits.Ions2and3arepreparedintheBellstate | ψ + ⟩ 23 = 1 2 ( | 0 ⟩ 2 | 1 ⟩ 3 + | 1 ⟩ 2 | 0 ⟩ 3 ) {\displaystyle|\psi^{+}\rangle_{23}={\frac{1}{\sqrt{2}}}(|0\rangle_{2}|1\rangle_{3}+|1\rangle_{2}|0\rangle_{3})} .Thestateofion1ispreparedarbitrarily.Thequantumstatesofions1and2aremeasuredbyilluminatingthemwithlightataspecificwavelength.Theobtainedfidelitiesforthisexperimentrangedbetween73%and76%.Thisislargerthanthemaximumpossibleaveragefidelityof66.7%thatcanbeobtainedusingcompletelyclassicalresources.[34] Ground-to-satellitequantumteleportation[edit] Thequantumstatebeingteleportedinthisexperimentis | χ ⟩ 1 = α | H ⟩ 1 + β | V ⟩ 1 {\displaystyle|\chi\rangle_{1}=\alpha|H\rangle_{1}+\beta|V\rangle_{1}} ,where α {\displaystyle\alpha} and β {\displaystyle\beta} areunknowncomplexnumbers, | H ⟩ {\displaystyle|H\rangle} representsthehorizontalpolarizationstate,and | V ⟩ {\displaystyle|V\rangle} representstheverticalpolarizationstate.ThequbitpreparedinthisstateisgeneratedinalaboratoryinNgari,Tibet.ThegoalwastoteleportthequantuminformationofthequbittotheMiciussatellitethatwaslaunchedonAugust16,2016,atanaltitudeofaround500 km.WhenaBellstatemeasurementisconductedonphotons1and2andtheresultingstateis | ϕ + ⟩ 12 = 1 2 ( | H ⟩ 1 | H ⟩ 2 + | V ⟩ 1 | V ⟩ 2 ) ) {\displaystyle|\phi^{+}\rangle_{12}={\frac{1}{\sqrt{2}}}(|H\rangle_{1}|H\rangle_{2}+|V\rangle_{1}|V\rangle_{2}))} ,photon3carriesthisdesiredstate.IftheBellstatedetectedis | ϕ − ⟩ 12 = 1 2 ( | H ⟩ 1 | H ⟩ 2 − | V ⟩ 1 | V ⟩ 2 ) {\displaystyle|\phi^{-}\rangle_{12}={\frac{1}{\sqrt{2}}}(|H\rangle_{1}|H\rangle_{2}-|V\rangle_{1}|V\rangle_{2})} ,thenaphaseshiftof π {\displaystyle\pi} isappliedtothestatetogetthedesiredquantumstate.Thedistancebetweenthegroundstationandthesatellitechangesfromaslittleas500 kmtoaslargeas1,400 km.Becauseofthechangingdistance,thechannellossoftheuplinkvariesbetween41 dBand52 dB.Theaveragefidelityobtainedfromthisexperimentwas0.80withastandarddeviationof0.01.Therefore,thisexperimentsuccessfullyestablishedaground-to-satelliteuplinkoveradistanceof500–1,400 kmusingquantumteleportation.Thisisanessentialsteptowardscreatingaglobal-scalequantuminternet.[6] Formalpresentation[edit] Thereareavarietyofwaysinwhichtheteleportationprotocolcanbewrittenmathematically.Someareverycompactbutabstract,andsomeareverbosebutstraightforwardandconcrete.Thepresentationbelowisofthelatterform:verbose,buthasthebenefitofshowingeachquantumstatesimplyanddirectly.Latersectionsreviewmorecompactnotations. Theteleportationprotocolbeginswithaquantumstateorqubit | ψ ⟩ {\displaystyle|\psi\rangle} ,inAlice'spossession,thatshewantstoconveytoBob.Thisqubitcanbewrittengenerally,inbra–ketnotation,as: | ψ ⟩ C = α | 0 ⟩ C + β | 1 ⟩ C . {\displaystyle|\psi\rangle_{C}=\alpha|0\rangle_{C}+\beta|1\rangle_{C}.} ThesubscriptCaboveisusedonlytodistinguishthisstatefromAandB,below. Next,theprotocolrequiresthatAliceandBobshareamaximallyentangledstate.Thisstateisfixedinadvance,bymutualagreementbetweenAliceandBob,andcanbeanyoneofthefourBellstatesshown.Itdoesnotmatterwhichone. | Φ + ⟩ A B = 1 2 ( | 0 ⟩ A ⊗ | 0 ⟩ B + | 1 ⟩ A ⊗ | 1 ⟩ B ) {\displaystyle|\Phi^{+}\rangle_{AB}={\frac{1}{\sqrt{2}}}(|0\rangle_{A}\otimes|0\rangle_{B}+|1\rangle_{A}\otimes|1\rangle_{B})} , | Ψ + ⟩ A B = 1 2 ( | 0 ⟩ A ⊗ | 1 ⟩ B + | 1 ⟩ A ⊗ | 0 ⟩ B ) {\displaystyle|\Psi^{+}\rangle_{AB}={\frac{1}{\sqrt{2}}}(|0\rangle_{A}\otimes|1\rangle_{B}+|1\rangle_{A}\otimes|0\rangle_{B})} , | Ψ − ⟩ A B = 1 2 ( | 0 ⟩ A ⊗ | 1 ⟩ B − | 1 ⟩ A ⊗ | 0 ⟩ B ) {\displaystyle|\Psi^{-}\rangle_{AB}={\frac{1}{\sqrt{2}}}(|0\rangle_{A}\otimes|1\rangle_{B}-|1\rangle_{A}\otimes|0\rangle_{B})} . | Φ − ⟩ A B = 1 2 ( | 0 ⟩ A ⊗ | 0 ⟩ B − | 1 ⟩ A ⊗ | 1 ⟩ B ) {\displaystyle|\Phi^{-}\rangle_{AB}={\frac{1}{\sqrt{2}}}(|0\rangle_{A}\otimes|0\rangle_{B}-|1\rangle_{A}\otimes|1\rangle_{B})} , Inthefollowing,assumethatAliceandBobsharethestate | Φ + ⟩ A B . {\displaystyle|\Phi^{+}\rangle_{AB}.} Aliceobtainsoneoftheparticlesinthepair,withtheothergoingtoBob.(ThisisimplementedbypreparingtheparticlestogetherandshootingthemtoAliceandBobfromacommonsource.)ThesubscriptsAandBintheentangledstaterefertoAlice'sorBob'sparticle. Atthispoint,Alicehastwoparticles(C,theoneshewantstoteleport,andA,oneoftheentangledpair),andBobhasoneparticle,B.Inthetotalsystem,thestateofthesethreeparticlesisgivenby | ψ ⟩ C ⊗ | Φ + ⟩ A B = ( α | 0 ⟩ C + β | 1 ⟩ C ) ⊗ 1 2 ( | 0 ⟩ A ⊗ | 0 ⟩ B + | 1 ⟩ A ⊗ | 1 ⟩ B ) . {\displaystyle|\psi\rangle_{C}\otimes|\Phi^{+}\rangle_{AB}=(\alpha|0\rangle_{C}+\beta|1\rangle_{C})\otimes{\frac{1}{\sqrt{2}}}(|0\rangle_{A}\otimes|0\rangle_{B}+|1\rangle_{A}\otimes|1\rangle_{B}).} AlicewillthenmakealocalmeasurementintheBellbasis(i.e.thefourBellstates)onthetwoparticlesinherpossession.Tomaketheresultofhermeasurementclear,itisbesttowritethestateofAlice'stwoqubitsassuperpositionsoftheBellbasis.Thisisdonebyusingthefollowinggeneralidentities,whichareeasilyverified: | 0 ⟩ ⊗ | 0 ⟩ = 1 2 ( | Φ + ⟩ + | Φ − ⟩ ) , {\displaystyle|0\rangle\otimes|0\rangle={\frac{1}{\sqrt{2}}}(|\Phi^{+}\rangle+|\Phi^{-}\rangle),} | 0 ⟩ ⊗ | 1 ⟩ = 1 2 ( | Ψ + ⟩ + | Ψ − ⟩ ) , {\displaystyle|0\rangle\otimes|1\rangle={\frac{1}{\sqrt{2}}}(|\Psi^{+}\rangle+|\Psi^{-}\rangle),} | 1 ⟩ ⊗ | 0 ⟩ = 1 2 ( | Ψ + ⟩ − | Ψ − ⟩ ) , {\displaystyle|1\rangle\otimes|0\rangle={\frac{1}{\sqrt{2}}}(|\Psi^{+}\rangle-|\Psi^{-}\rangle),} and | 1 ⟩ ⊗ | 1 ⟩ = 1 2 ( | Φ + ⟩ − | Φ − ⟩ ) . {\displaystyle|1\rangle\otimes|1\rangle={\frac{1}{\sqrt{2}}}(|\Phi^{+}\rangle-|\Phi^{-}\rangle).} Afterexpandingtheexpressionfor | ψ ⟩ C ⊗ | Φ + ⟩ A B {\textstyle{\begin{aligned}|&\psi\rangle_{C}\otimes\|\Phi^{+}\rangle_{AB}\end{aligned}}} ,oneappliestheseidentitiestothequbitswithAandCsubscripts.Inparticular, α 1 2 | 0 ⟩ C ⊗ | 0 ⟩ A ⊗ | 0 ⟩ B = α 1 2 ( | Φ + ⟩ C A + | Φ − ⟩ C A ) ⊗ | 0 ⟩ B , {\displaystyle\alpha{\frac{1}{\sqrt{2}}}|0\rangle_{C}\otimes|0\rangle_{A}\otimes|0\rangle_{B}=\alpha{\frac{1}{2}}(|\Phi^{+}\rangle_{CA}+|\Phi^{-}\rangle_{CA})\otimes|0\rangle_{B},} andtheothertermsfollowsimilarly.Combiningsimilarterms,thetotalthreeparticlestateofA,BandCtogetherbecomesthefollowingfour-termsuperposition: | ψ ⟩ C ⊗ | Φ + ⟩ A B = 1 2 [ | Φ + ⟩ C A ⊗ ( α | 0 ⟩ B + β | 1 ⟩ B ) + | Φ − ⟩ C A ⊗ ( α | 0 ⟩ B − β | 1 ⟩ B ) + | Ψ + ⟩ C A ⊗ ( α | 1 ⟩ B + β | 0 ⟩ B ) + | Ψ − ⟩ C A ⊗ ( α | 1 ⟩ B − β | 0 ⟩ B ) ] . {\displaystyle{\begin{aligned}|&\psi\rangle_{C}\otimes\|\Phi^{+}\rangle_{AB}\=\\{\frac{1}{2}}{\Big\lbrack}\&|\Phi^{+}\rangle_{CA}\otimes(\alpha|0\rangle_{B}+\beta|1\rangle_{B})\+\|\Phi^{-}\rangle_{CA}\otimes(\alpha|0\rangle_{B}-\beta|1\rangle_{B})\\\+\&|\Psi^{+}\rangle_{CA}\otimes(\alpha|1\rangle_{B}+\beta|0\rangle_{B})\+\|\Psi^{-}\rangle_{CA}\otimes(\alpha|1\rangle_{B}-\beta|0\rangle_{B}){\Big\rbrack}.\\\end{aligned}}} [35] Notethatallthreeparticlesarestillinthesametotalstatesincenooperationshavebeenperformed.Rather,theaboveisjustachangeofbasisonAlice'spartofthesystem.TheactualteleportationoccurswhenAlicemeasureshertwoqubitsA,C,intheBellbasis AsimplequantumcircuitthatmapsoneofthefourBellstates(theEPRpairinthepicture)intooneofthefourtwo-qubitcomputationalbasisstates.ThecircuitconsistsofaCNOTgatefollowedbyaHadamardoperation.Intheoutputs,aandbtakeonvaluesof0or1. | Φ + ⟩ C A , | Φ − ⟩ C A , | Ψ + ⟩ C A , | Ψ − ⟩ C A . {\displaystyle|\Phi^{+}\rangle_{CA},|\Phi^{-}\rangle_{CA},|\Psi^{+}\rangle_{CA},|\Psi^{-}\rangle_{CA}.} Equivalently,themeasurementmaybedoneinthecomputationalbasis, { | 0 ⟩ , | 1 ⟩ } {\displaystyle\{|0\rangle,|1\rangle\}} ,bymappingeachBellstateuniquelytooneof { | 0 ⟩ ⊗ | 0 ⟩ , | 0 ⟩ ⊗ | 1 ⟩ , | 1 ⟩ ⊗ | 0 ⟩ , | 1 ⟩ ⊗ | 1 ⟩ } {\displaystyle\{|0\rangle\otimes|0\rangle,|0\rangle\otimes|1\rangle,|1\rangle\otimes|0\rangle,|1\rangle\otimes|1\rangle\}} withthequantumcircuitinthefiguretotheright. Giventheaboveexpression,evidentlytheresultofAlice's(local)measurementisthatthethree-particlestatewouldcollapsetooneofthefollowingfourstates(withequalprobabilityofobtainingeach): | Φ + ⟩ C A ⊗ ( α | 0 ⟩ B + β | 1 ⟩ B ) {\displaystyle|\Phi^{+}\rangle_{CA}\otimes(\alpha|0\rangle_{B}+\beta|1\rangle_{B})} | Φ − ⟩ C A ⊗ ( α | 0 ⟩ B − β | 1 ⟩ B ) {\displaystyle|\Phi^{-}\rangle_{CA}\otimes(\alpha|0\rangle_{B}-\beta|1\rangle_{B})} | Ψ + ⟩ C A ⊗ ( α | 1 ⟩ B + β | 0 ⟩ B ) {\displaystyle|\Psi^{+}\rangle_{CA}\otimes(\alpha|1\rangle_{B}+\beta|0\rangle_{B})} | Ψ − ⟩ C A ⊗ ( α | 1 ⟩ B − β | 0 ⟩ B ) {\displaystyle|\Psi^{-}\rangle_{CA}\otimes(\alpha|1\rangle_{B}-\beta|0\rangle_{B})} Alice'stwoparticlesarenowentangledtoeachother,inoneofthefourBellstates,andtheentanglementoriginallysharedbetweenAlice'sandBob'sparticlesisnowbroken.Bob'sparticletakesononeofthefoursuperpositionstatesshownabove.NotehowBob'squbitisnowinastatethatresemblesthestatetobeteleported.ThefourpossiblestatesforBob'squbitareunitaryimagesofthestatetobeteleported. TheresultofAlice'sBellmeasurementtellsherwhichoftheabovefourstatesthesystemisin.ShecannowsendherresulttoBobthroughaclassicalchannel.Twoclassicalbitscancommunicatewhichofthefourresultssheobtained. AfterBobreceivesthemessagefromAlice,hewillknowwhichofthefourstateshisparticleisin.Usingthisinformation,heperformsaunitaryoperationonhisparticletotransformittothedesiredstate α | 0 ⟩ B + β | 1 ⟩ B {\displaystyle\alpha|0\rangle_{B}+\beta|1\rangle_{B}} : IfAliceindicatesherresultis | Φ + ⟩ C A {\displaystyle|\Phi^{+}\rangle_{CA}} ,Bobknowshisqubitisalreadyinthedesiredstateanddoesnothing.Thisamountstothetrivialunitaryoperation,theidentityoperator. Ifthemessageindicates | Φ − ⟩ C A {\displaystyle|\Phi^{-}\rangle_{CA}} ,BobwouldsendhisqubitthroughtheunitaryquantumgategivenbythePaulimatrix σ 3 = [ 1 0 0 − 1 ] {\displaystyle\sigma_{3}={\begin{bmatrix}1&0\\0&-1\end{bmatrix}}} torecoverthestate. IfAlice'smessagecorrespondsto | Ψ + ⟩ C A {\displaystyle|\Psi^{+}\rangle_{CA}} ,Bobappliesthegate σ 1 = [ 0 1 1 0 ] {\displaystyle\sigma_{1}={\begin{bmatrix}0&1\\1&0\end{bmatrix}}} tohisqubit. Finally,fortheremainingcase,theappropriategateisgivenby σ 3 σ 1 = − σ 1 σ 3 = i σ 2 = [ 0 1 − 1 0 ] . {\displaystyle\sigma_{3}\sigma_{1}=-\sigma_{1}\sigma_{3}=i\sigma_{2}={\begin{bmatrix}0&1\\-1&0\end{bmatrix}}.} Teleportationisthusachieved.Theabove-mentionedthreegatescorrespondtorotationsofπradians(180°)aboutappropriateaxes(X,YandZ)intheBlochspherepictureofaqubit. Someremarks: Afterthisoperation,Bob'squbitwilltakeonthestate | ψ ⟩ B = α | 0 ⟩ B + β | 1 ⟩ B {\displaystyle|\psi\rangle_{B}=\alpha|0\rangle_{B}+\beta|1\rangle_{B}} ,andAlice'squbitbecomesan(undefined)partofanentangledstate.Teleportationdoesnotresultinthecopyingofqubits,andhenceisconsistentwiththeno-cloningtheorem. Thereisnotransferofmatterorenergyinvolved.Alice'sparticlehasnotbeenphysicallymovedtoBob;onlyitsstatehasbeentransferred.Theterm"teleportation",coinedbyBennett,Brassard,Crépeau,Jozsa,PeresandWootters,reflectstheindistinguishabilityofquantummechanicalparticles. Foreveryqubitteleported,AliceneedstosendBobtwoclassicalbitsofinformation.Thesetwoclassicalbitsdonotcarrycompleteinformationaboutthequbitbeingteleported.Ifaneavesdropperinterceptsthetwobits,shemayknowexactlywhatBobneedstodoinordertorecoverthedesiredstate.However,thisinformationisuselessifshecannotinteractwiththeentangledparticleinBob'spossession. Alternativenotations[edit] Quantumteleportationinitsdiagrammaticform.[36]employingPenrosegraphicalnotation.[37]Formally,suchacomputationtakesplaceinadaggercompactcategory.Thisresultsintheabstractdescriptionofquantumteleportationasemployedincategoricalquantummechanics. Quantumcircuitrepresentationforteleportationofaquantumstate,[38][39]asdescribedabove.Thecircuitconsumesthe | Φ + ⟩ {\displaystyle|\Phi^{+}\rangle} Bellstateandthequbittoteleportasinput,andconsistsofCNOT,Hadamard,twomeasurementsoftwoqubits,andfinally,twogateswithclassiccontrol:aPauliX,andaPauliZ,meaningthatiftheresultfromthemeasurementwas | 1 ⟩ {\displaystyle|1\rangle} ,thentheclassicallycontrolledPauligateisexecuted.Afterthecircuithasruntocompletion,thevalueof | ψ ⟩ C {\displaystyle|\psi\rangle_{C}} willhavemovedto,orteleportedto | ψ ⟩ B {\displaystyle|\psi\rangle_{B}} ,and | ψ ⟩ C {\displaystyle|\psi\rangle_{C}} willhaveitsvaluesettoeither | 0 ⟩ {\displaystyle|0\rangle} or | 1 ⟩ {\displaystyle|1\rangle} ,dependingontheresultfromthemeasurementonthatqubit.Thiscircuitcanalsobeusedforentanglementswapping,if | ψ ⟩ C {\displaystyle|\psi\rangle_{C}} isoneofthequbitsthatmakeupanentangledstate,asdescribedinthetext. Thereareavarietyofdifferentnotationsinusethatdescribetheteleportationprotocol.Onecommononeisbyusingthenotationofquantumgates. Intheabovederivation,theunitarytransformationthatisthechangeofbasis(fromthestandardproductbasisintotheBellbasis)canbewrittenusingquantumgates.Directcalculationshowsthatthisgateisgivenby G = ( H ⊗ I ) CNOT {\displaystyleG=(H\otimesI)\operatorname{CNOT}} whereHistheonequbitWalsh-Hadamardgateand CNOT {\displaystyle\operatorname{CNOT}} istheControlledNOTgate. Entanglementswapping[edit] Teleportationcanbeappliednotjusttopurestates,butalsomixedstates,thatcanberegardedasthestateofasinglesubsystemofanentangledpair.Theso-calledentanglementswappingisasimpleandillustrativeexample. IfAliceandBobshareanentangledpair,andBobteleportshisparticletoCarol,thenAlice'sparticleisnowentangledwithCarol'sparticle.Thissituationcanalsobeviewedsymmetricallyasfollows: AliceandBobshareanentangledpair,andBobandCarolshareadifferententangledpair.NowletBobperformaprojectivemeasurementonhistwoparticlesintheBellbasisandcommunicatetheresulttoCarol.TheseactionsarepreciselytheteleportationprotocoldescribedabovewithBob'sfirstparticle,theoneentangledwithAlice'sparticle,asthestatetobeteleported.WhenCarolfinishestheprotocolshenowhasaparticlewiththeteleportedstate,thatisanentangledstatewithAlice'sparticle.Thus,althoughAliceandCarolneverinteractedwitheachother,theirparticlesarenowentangled. AdetaileddiagrammaticderivationofentanglementswappinghasbeengivenbyBobCoecke,[40]presentedintermsofcategoricalquantummechanics. AlgorithmforswappingBellpairs[edit] AnimportantapplicationofentanglementswappingisdistributingBellstatesforuseinentanglementdistributedquantumnetworks.Atechnicaldescriptionoftheentanglementswappingprotocolisgivenhereforpurebellstates. AliceandBoblocallyprepareknownBellpairsresultingintheinitialstate: | ψ ⟩ i n = | Φ + ⟩ A 1 , A 2 | Φ + ⟩ B 1 , B 2 {\displaystyle|\psi\rangle_{\rm{in}}=|\Phi^{+}\rangle_{A_{1},A_{2}}|\Phi^{+}\rangle_{B_{1},B_{2}}} Alicesendsqubit A 1 {\displaystyleA_{1}} toathirdpartyCarol Bobsendsqubit B 1 {\displaystyleB_{1}} toCarol CarolperformsaBellprojectionbetween A 1 {\displaystyleA_{1}} and B 1 {\displaystyleB_{1}} thatbychanceresultsinthemeasurementoutcome: ⟨ Φ + | A 1 , B 1 | ψ ⟩ i n = | Φ + ⟩ A 2 , B 2 {\displaystyle\langle\Phi^{+}|_{A_{1},B_{1}}|\psi\rangle_{\rm{in}}=|\Phi^{+}\rangle_{A_{2},B_{2}}} InthecaseoftheotherthreeBellprojectionoutcomes,localcorrectionsgivenbyPaulioperatorsaremadebyAliceandorBobafterCarolhascommunicatedtheresultsofthemeasurement. ⟨ Φ − | A 1 , B 1 | ψ ⟩ i n = Z ^ B 2 | Φ + ⟩ A 2 , B 2 {\displaystyle\langle\Phi^{-}|_{A_{1},B_{1}}|\psi\rangle_{\rm{in}}={\hat{Z}}_{B_{2}}|\Phi^{+}\rangle_{A_{2},B_{2}}} ⟨ Ψ + | A 1 , B 1 | ψ ⟩ i n = X ^ B 2 | Φ + ⟩ A 2 , B 2 {\displaystyle\langle\Psi^{+}|_{A_{1},B_{1}}|\psi\rangle_{\rm{in}}={\hat{X}}_{B_{2}}|\Phi^{+}\rangle_{A_{2},B_{2}}} ⟨ Ψ − | A 1 , B 1 | ψ ⟩ i n = X ^ B 2 Z ^ B 2 | Φ + ⟩ A 2 , B 2 {\displaystyle\langle\Psi^{-}|_{A_{1},B_{1}}|\psi\rangle_{\rm{in}}={\hat{X}}_{B_{2}}{\hat{Z}}_{B_{2}}|\Phi^{+}\rangle_{A_{2},B_{2}}} AliceandBobnowhaveaBellpairbetweenqubits A 2 {\displaystyleA_{2}} and B 2 {\displaystyleB_{2}} | ψ ⟩ o u t = | Φ + ⟩ A 2 , B 2 {\displaystyle|\psi\rangle_{\rm{out}}=|\Phi^{+}\rangle_{A_{2},B_{2}}} Generalizationsoftheteleportationprotocol[edit] Thebasicteleportationprotocolforaqubitdescribedabovehasbeengeneralizedinseveraldirections,inparticularregardingthedimensionofthesystemteleportedandthenumberofpartiesinvolved(eitherassender,controller,orreceiver). d-dimensionalsystems[edit] Ageneralizationto d {\displaystyled} -levelsystems(so-calledqudits)isstraightforwardandwasalreadydiscussedintheoriginalpaperbyBennettetal.:[41]themaximallyentangledstateoftwoqubitshastobereplacedbyamaximallyentangledstateoftwoquditsandtheBellmeasurementbyameasurementdefinedbyamaximallyentangledorthonormalbasis.AllpossiblesuchgeneralizationswerediscussedbyWernerin2001.[42] Thegeneralizationtoinfinite-dimensionalso-calledcontinuous-variablesystemswasproposedin[43]andledtothefirstteleportationexperimentthatworkedunconditionally.[44] Multipartiteversions[edit] Theuseofmultipartiteentangledstatesinsteadofabipartitemaximallyentangledstateallowsforseveralnewfeatures:eitherthesendercanteleportinformationtoseveralreceiverseithersendingthesamestatetoallofthem(whichallowstoreducetheamountofentanglementneededfortheprocess)[45]orteleportingmultipartitestates[46]orsendingasinglestateinsuchawaythatthereceivingpartiesneedtocooperatetoextracttheinformation.[47]Adifferentwayofviewingthelattersettingisthatsomeofthepartiescancontrolwhethertheotherscanteleport. Logicgateteleportation[edit] Mainarticle:Quantumgateteleportation Ingeneral,mixedstatesρmaybetransported,andalineartransformationωappliedduringteleportation,thusallowingdataprocessingofquantuminformation.Thisisoneofthefoundationalbuildingblocksofquantuminformationprocessing.Thisisdemonstratedbelow. Generaldescription[edit] Ageneralteleportationschemecanbedescribedasfollows.Threequantumsystemsareinvolved.System1isthe(unknown)stateρtobeteleportedbyAlice.Systems2and3areinamaximallyentangledstateωthataredistributedtoAliceandBob,respectively.Thetotalsystemistheninthestate ρ ⊗ ω . {\displaystyle\rho\otimes\omega.} AsuccessfulteleportationprocessisaLOCCquantumchannelΦthatsatisfies ( Tr 12 ∘ Φ ) ( ρ ⊗ ω ) = ρ , {\displaystyle(\operatorname{Tr}_{12}\circ\Phi)(\rho\otimes\omega)=\rho\,,} whereTr12isthepartialtraceoperationwithrespectsystems1and2,and ∘ {\displaystyle\circ} denotesthecompositionofmaps.ThisdescribesthechannelintheSchrödingerpicture. TakingadjointmapsintheHeisenbergpicture,thesuccessconditionbecomes ⟨ Φ ( ρ ⊗ ω ) | I ⊗ O ⟩ = ⟨ ρ | O ⟩ {\displaystyle\langle\Phi(\rho\otimes\omega)|I\otimesO\rangle=\langle\rho|O\rangle} forallobservableOonBob'ssystem.Thetensorfactorin I ⊗ O {\displaystyleI\otimesO} is 12 ⊗ 3 {\displaystyle12\otimes3} whilethatof ρ ⊗ ω {\displaystyle\rho\otimes\omega} is 1 ⊗ 23 {\displaystyle1\otimes23} . Furtherdetails[edit] TheproposedchannelΦcanbedescribedmoreexplicitly.Tobeginteleportation,Aliceperformsalocalmeasurementonthetwosubsystems(1and2)inherpossession.Assumethelocalmeasurementhaveeffects F i = M i 2 . {\displaystyle{F_{i}}={M_{i}^{2}}.} Ifthemeasurementregistersthei-thoutcome,theoverallstatecollapsesto ( M i ⊗ I ) ( ρ ⊗ ω ) ( M i ⊗ I ) . {\displaystyle(M_{i}\otimesI)(\rho\otimes\omega)(M_{i}\otimesI).} Thetensorfactorin ( M i ⊗ I ) {\displaystyle(M_{i}\otimesI)} is 12 ⊗ 3 {\displaystyle12\otimes3} whilethatof ρ ⊗ ω {\displaystyle\rho\otimes\omega} is 1 ⊗ 23 {\displaystyle1\otimes23} .BobthenappliesacorrespondinglocaloperationΨionsystem3.Onthecombinedsystem,thisisdescribedby ( I d ⊗ Ψ i ) ( M i ⊗ I ) ( ρ ⊗ ω ) ( M i ⊗ I ) . {\displaystyle(Id\otimes\Psi_{i})(M_{i}\otimesI)(\rho\otimes\omega)(M_{i}\otimesI).} whereIdistheidentitymaponthecompositesystem 1 ⊗ 2 {\displaystyle1\otimes2} . Therefore,thechannelΦisdefinedby Φ ( ρ ⊗ ω ) = ∑ i ( I d ⊗ Ψ i ) ( M i ⊗ I ) ( ρ ⊗ ω ) ( M i ⊗ I ) {\displaystyle\Phi(\rho\otimes\omega)=\sum_{i}(Id\otimes\Psi_{i})(M_{i}\otimesI)(\rho\otimes\omega)(M_{i}\otimesI)} NoticeΦsatisfiesthedefinitionofLOCC.Asstatedabove,theteleportationissaidtobesuccessfulif,forallobservableOonBob'ssystem,theequality ⟨ Φ ( ρ ⊗ ω ) , I ⊗ O ⟩ = ⟨ ρ , O ⟩ {\displaystyle\langle\Phi(\rho\otimes\omega),I\otimesO\rangle=\langle\rho,O\rangle} holds.Thelefthandsideoftheequationis: ∑ i ⟨ ( I d ⊗ Ψ i ) ( M i ⊗ I ) ( ρ ⊗ ω ) ( M i ⊗ I ) , I ⊗ O ⟩ {\displaystyle\sum_{i}\langle(Id\otimes\Psi_{i})(M_{i}\otimesI)(\rho\otimes\omega)(M_{i}\otimesI),\;I\otimesO\rangle} = ∑ i ⟨ ( M i ⊗ I ) ( ρ ⊗ ω ) ( M i ⊗ I ) , I ⊗ Ψ i ∗ ( O ) ⟩ {\displaystyle=\sum_{i}\langle(M_{i}\otimesI)(\rho\otimes\omega)(M_{i}\otimesI),\;I\otimes\Psi_{i}^{*}(O)\rangle} whereΨi*istheadjointofΨiintheHeisenbergpicture.Assumingallobjectsarefinitedimensional,thisbecomes ∑ i Tr ( ρ ⊗ ω ) ( F i ⊗ Ψ i ∗ ( O ) ) . {\displaystyle\sum_{i}\operatorname{Tr}\;(\rho\otimes\omega)(F_{i}\otimes\Psi_{i}^{*}(O)).} Thesuccesscriterionforteleportationhastheexpression ∑ i Tr ( ρ ⊗ ω ) ( F i ⊗ Ψ i ∗ ( O ) ) = Tr ρ ⋅ O . {\displaystyle\sum_{i}\operatorname{Tr}\;(\rho\otimes\omega)(F_{i}\otimes\Psi_{i}^{*}(O))=\operatorname{Tr}\;\rho\cdotO.} Localexplanationofthephenomenon[edit] AlocalexplanationofquantumteleportationisputforwardbyDavidDeutschandPatrickHayden,withrespecttothemany-worldsinterpretationofquantummechanics.TheirpaperassertsthatthetwobitsthatAlicesendsBobcontain"locallyinaccessibleinformation"resultingintheteleportationofthequantumstate."Theabilityofquantuminformationtoflowthroughaclassicalchannel[…],survivingdecoherence,is[…]thebasisofquantumteleportation."[48] Recentdevelopments[edit] Whilequantumteleportationisinaninfancystage,therearemanyaspectspertainingtoteleportationthatscientistsareworkingtobetterunderstandorimprovetheprocessthatinclude: Higherdimensions[edit] Quantumteleportationcanimprovetheerrorsassociatedwithfaulttolerantquantumcomputationviaanarrangementoflogicgates.ExperimentsbyD.GottesmanandI.L.Chuanghavedeterminedthata"Cliffordhierarchy"[49]gatearrangementwhichactstoenhanceprotectionagainstenvironmentalerrors.Overall,ahigherthresholdoferrorisallowedwiththeCliffordhierarchyasthesequenceofgatesrequireslessresourcesthatareneededforcomputation.Whilethemoregatesthatareusedinaquantumcomputercreatemorenoise,thegatesarrangementanduseofteleportationinlogictransfercanreducethisnoiseasitcallsforless"traffic"thatiscompiledinthesequantumnetworks.[50]Themorequbitsusedforaquantumcomputer,themorelevelsareaddedtoagatearrangement,withthediagonalizationofgatearrangementvaryingindegree.HigherdimensionanalysisinvolvesthehigherlevelgatearrangementoftheCliffordhierarchy.[51] Informationquality[edit] Consideringthepreviouslymentionedrequirementofanintermediateentangledstateforquantumteleportation,thereneedstobeconsiderationplacedontothepurityofthisstateforinformationquality.Aprotectionthathasbeendevelopedinvolvestheuseofcontinuousvariableinformation(ratherthanatypicaldiscretevariable)creatingasuperimposedcoherentintermediatestate.Thisinvolvesmakingaphaseshiftinthereceivedinformationandthenaddingamixingstepuponreceptionusingapreferredstate,whichcouldbeanoddorevencoherentstate,thatwillbe"conditionedtotheclassicalinformationofthesender"creatingatwomodestatethatcontainstheoriginallysentinformation.[52] Therehavealsobeendevelopmentswithteleportinginformationbetweensystemsthatalreadyhavequantuminformationinthem.ExperimentsdonebyFeng,Xu,Zhouetal.havedemonstratedthatteleportationofaqubittoaphotonthatalreadyhasaqubitworthofinformationispossibleduetousinganopticalqubit-ququartentanglinggate.[4]Thisqualitycanincreasecomputationpossibilitiesascalculationscanbedonebasedonpreviouslystoredinformationallowingforimprovementsonpastcalculations. Seealso[edit] Superdensecoding Quantumcomplexnetwork Quantummechanics Introductiontoquantummechanics Quantumcomputer Quantumcryptography Quantumnonlocality Heisenberguncertaintyprinciple Wheeler–Feynmanabsorbertheory References[edit] Specific[edit] ^Bennett,CharlesH.;Brassard,Gilles;Crépeau,Claude;Jozsa,Richard;Peres,Asher;Wootters,WilliamK.(29March1993)."TeleportinganunknownquantumstateviadualclassicalandEinstein-Podolsky-Rosenchannels".PhysicalReviewLetters.70(13):1895–1899.Bibcode:1993PhRvL..70.1895B.doi:10.1103/PhysRevLett.70.1895.PMID 10053414. ^abD.Boschi;S.Branca;F.DeMartini;L.Hardy;S.Popescu(1998)."ExperimentalRealizationofTeleportinganUnknownPureQuantumStateviaDualClassicalandEinstein-Podolsky-RosenChannels".PhysicalReviewLetters.80(6):1121–1125.arXiv:quant-ph/9710013.Bibcode:1998PhRvL..80.1121B.doi:10.1103/PhysRevLett.80.1121.S2CID 15020942. ^abcBouwmeester,Dik;Pan,Jian-Wei;Mattle,Klaus;Eibl,Manfred;Weinfurter,Harald;Zeilinger,Anton(11December1997)."Experimentalquantumteleportation".Nature.390(6660):575–579.arXiv:1901.11004.Bibcode:1997Natur.390..575B.doi:10.1038/37539.ISSN 1476-4687.S2CID 4422887. ^abTianfengFeng,QiaoXu,LinxiangZhou,MaolinLuo,WuhongZhang,XiaoqiZhou(20September2020)."Teleportinganunknownquantumstatetoaphotonwithpriorquantuminformation".arXiv:2009.09421[quant-ph].{{citearxiv}}:CS1maint:usesauthorsparameter(link) ^Chang,Kenneth(17June2004)."ScientistsTeleportnotKirkbutanAtom".NewYorkTimes. ^abRen,Ji-Gang;Xu,Ping;Yong,Hai-Lin;Zhang,Liang;Liao,Sheng-Kai;Yin,Juan;Liu,Wei-Yue;Cai,Wen-Qi;Yang,Meng;Li,Li;Yang,Kui-Xing(9August2017)."Ground-to-satellitequantumteleportation".Nature.549(7670):70–73.arXiv:1707.00934.Bibcode:2017Natur.549...70R.doi:10.1038/nature23675.ISSN 1476-4687.PMID 28825708.S2CID 4468803. ^Barrett,M.D.;Chiaverini,J.;Schaetz,T.;Britton,J.;Itano,W.M.;Jost,J.D.;Knill,E.;Langer,C.;Leibfried,D.;Ozeri,R.;Wineland,D.J.(2004)."Deterministicquantumteleportationofatomicqubits".Nature.429(6993):737–739.Bibcode:2004Natur.429..737B.doi:10.1038/nature02608.PMID 15201904.S2CID 1608775. ^S.Pirandola,J.Eisert,C.Weedbrook,A.Furusawa,andS.L.Braunstein(2015)."Advancesinquantumteleportation".NaturePhotonics.9(10):641–652.arXiv:1505.07831.Bibcode:2015NaPho...9..641P.doi:10.1038/nphoton.2015.154.S2CID 15074330.{{citejournal}}:CS1maint:usesauthorsparameter(link) ^LoFranco,Rosario;Compagno,Giuseppe(2018)."IndistinguishabilityofElementarySystemsasaResourceforQuantumInformationProcessing".PhysicalReviewLetters.120(24):240403.arXiv:1712.00706.Bibcode:2018PhRvL.120x0403L.doi:10.1103/PhysRevLett.120.240403.PMID 29957003.S2CID 49562954. ^abRupertUrsin(August2004)."QuantumteleportationacrosstheDanube".Nature.430(7002):849.Bibcode:2004Natur.430..849U.doi:10.1038/430849a.PMID 15318210.S2CID 4426035. ^Jin,Xian-Min;Ren,Ji-Gang;Yang,Bin;Yi,Zhen-Huan;Zhou,Fei;Xu,Xiao-Fan;Wang,Shao-Kai;Yang,Dong;Hu,Yuan-Feng;Jiang,Shuo;Yang,Tao;Yin,Hao;Chen,Kai;Peng,Cheng-Zhi;Pan,Jian-Wei(16May2010)."Experimentalfree-spacequantumteleportation".NaturePhotonics.4(6):376.Bibcode:2010NaPho...4..376J.doi:10.1038/nphoton.2010.87. ^abcdMa,Xiao-Song;Herbst,Thomas;Scheidl,Thomas;Wang,Daqing;Kropatschek,Sebastian;Naylor,William;Wittmann,Bernhard;Mech,Alexandra;Kofler,Johannes;Anisimova,Elena;Makarov,Vadim;Jennewein,Thomas;Ursin,Rupert;Zeilinger,Anton(5September2012)."Quantumteleportationover143kilometresusingactivefeed-forward".Nature.489(7415):269–73.arXiv:1205.3909.Bibcode:2012Natur.489..269M.doi:10.1038/nature11472.PMID 22951967.S2CID 209109. ^Ma,X.S.;Herbst,T.;Scheidl,T.;Wang,D.;Kropatschek,S.;Naylor,W.;Wittmann,B.;Mech,A.;et al.(2012)."Quantumteleportationover143kilometresusingactivefeed-forward".Nature.489(7415):269–273.arXiv:1205.3909.Bibcode:2012Natur.489..269M.doi:10.1038/nature11472.PMID 22951967.S2CID 209109. ^Takesue,Hiroki;et al.(20October2015)."Quantumteleportationover100kmoffiberusinghighlyefficientsuperconductingnanowiresingle-photondetectors".Optica.2(10):832–835.arXiv:1510.00476.Bibcode:2015Optic...2..832T.doi:10.1364/OPTICA.2.000832.S2CID 55109707. ^Nölleke,Christian;Neuzner,Andreas;Reiserer,Andreas;Hahn,Carolin;Rempe,Gerhard;Ritter,Stephan(2013)."EfficientTeleportationbetweenRemoteSingle-AtomQuantumMemories".PhysicalReviewLetters.110(14):140403.arXiv:1212.3127.Bibcode:2013PhRvL.110n0403N.doi:10.1103/PhysRevLett.110.140403.PMID 25166964.S2CID 6597459. ^Zhao,Zhi;Chen,Yu-Ao;Zhang,An-Ning;Yang,Tao;Briegel,HansJ.;Pan,Jian-Wei(2004)."Experimentaldemonstrationoffive-photonentanglementandopen-destinationteleportation".Nature.430(6995):54–58.arXiv:quant-ph/0402096.Bibcode:2004Natur.430...54Z.doi:10.1038/nature02643.PMID 15229594.S2CID 4336020. ^Zhang,Qiang;Goebel,Alexander;Wagenknecht,Claudia;Chen,Yu-Ao;Zhao,Bo;Yang,Tao;Mair,Alois;Schmiedmayer,Jörg;Pan,Jian-Wei(2006)."Experimentalquantumteleportationofatwo-qubitcompositesystem".NaturePhysics.2(10):678–682.arXiv:quant-ph/0609129.Bibcode:2006NatPh...2..678Z.doi:10.1038/nphys417.S2CID 18201599. ^Lee,Noriyuki;HugoBenichi;YuishiTakeno;ShuntaroTakeda;JamesWebb;ElanorHuntington;AkiraFurusawa(April2011)."TeleportationofNonclassicalWavePacketsofLight".Science.332(6027):330–333.arXiv:1205.6253.Bibcode:2011Sci...332..330L.CiteSeerX 10.1.1.759.1059.doi:10.1126/science.1201034.PMID 21493853.S2CID 206531447. ^Trute,Peter."Quantumteleporterbreakthrough".TheUniversityOfNewSouthWales.Retrieved17April2011. ^Takedaetal.,"Deterministicquantumteleportationofphotonicquantumbitsbyahybridtechnique",Nature,August2013. ^Markoff,John(29May2014)."ScientistsReportFindingReliableWaytoTeleportData".TheNewYorkTimes.Retrieved29May2014. ^Pfaff,W.;et al.(29May2014)."Unconditionalquantumteleportationbetweendistantsolid-statequantumbits".Science.345(6196):532–535.arXiv:1404.4369.Bibcode:2014Sci...345..532P.doi:10.1126/science.1253512.PMID 25082696.S2CID 2190249. ^"Twoquantumpropertiesteleportedtogetherforfirsttime".PhysicsWorld.com.27February2015. ^Wang,Xi-Lin;Xin-DongCai;Zu-EnSu;Ming-ChengChen;DianWu;LiLi;Nai-LeLiu;Chao-YangLu;Jian-WeiPan(26February2015)."Quantumteleportationofmultipledegreesoffreedomofasinglephoton".Nature.518(7540):516–519.Bibcode:2015Natur.518..516W.doi:10.1038/nature14246.PMID 25719668.S2CID 4448594. ^Xia,Xiu-Xiu;Qi-ChaoSun;QiangZhang;Jian-WeiPan(2018)."Longdistancequantumteleportation".QuantumScienceandTechnology.3(1):014012.Bibcode:2018QS&T....3a4012X.doi:10.1088/2058-9565/aa9baf. ^Sun,Qi-Chao;Mao,Ya-Li;Chen,Sijing;Zhang,Wei;Jiang,Yang-Fan;Zhang,Yanbao;Zhang,Weijun;Miki,Shigehito;Yamashita,Taro;Terai,Hirotaka;Jiang,Xiao;Chen,Teng-Yun;You,Lixing;Chen,Xianfeng;Wang,Zhen;Fan,Jingyun;Zhang,Qiang;Pan,Jian-Wei(19September2016)."Quantumteleportationwithindependentsourcesandpriorentanglementdistributionoveranetwork".NaturePhotonics.10(10):671–675.arXiv:1602.07081.Bibcode:2016NaPho..10..671S.doi:10.1038/nphoton.2016.179.ISSN 1749-4893. ^Valivarthi,Raju;Puigibert,Marcel.liGrimau;Zhou,Qiang;Aguilar,GabrielH.;Verma,VarunB.;Marsili,Francesco;Shaw,MatthewD.;Nam,SaeWoo;Oblak,Daniel(19September2016)."Quantumteleportationacrossametropolitanfibrenetwork".NaturePhotonics.10(10):676–680.arXiv:1605.08814.Bibcode:2016NaPho..10..676V.doi:10.1038/nphoton.2016.180.ISSN 1749-4885.S2CID 119163338. ^Valivarthi,Raju;Davis,SamanthaI.;Peña,Cristián;Xie,Si;Lauk,Nikolai;Narváez,Lautaro;Allmaras,JasonP.;Beyer,AndrewD.;Gim,Yewon;Hussein,Meraj;Iskander,George(4December2020)."TeleportationSystemsTowardaQuantumInternet".PRXQuantum.1(2):020317.arXiv:2007.11157.Bibcode:2020PRXQ....1b0317V.doi:10.1103/PRXQuantum.1.020317.ISSN 2691-3399.S2CID 220686903. ^"Researchersachievefirst"sustained"longdistancequantumteleportation".Futurism.Retrieved6June2021. ^"Quantumteleportationbetweenatomicsystemsoverlongdistances".Phys.Org. ^Krauter,H.;Salart,D.;Muschik,C.A.;Petersen,J.M.;Shen,Heng;Fernholz,T.;Polzik,E.S.(2June2013)."Deterministicquantumteleportationbetweendistantatomicobjects".NaturePhysics.9(7):400.arXiv:1212.6746.Bibcode:2013NatPh...9..400K.doi:10.1038/nphys2631.S2CID 118724313. ^Chou,KevinS.;Blumoff,JacobZ.;Wang,ChristopherS.;Reinhold,PhilipC.;Axline,ChristopherJ.;Gao,YvonneY.;Frunzio,L.;Devoret,M.H.;Jiang,Liang;Schoelkopf,R.J.(2018)."Deterministicteleportationofaquantumgatebetweentwologicalqubits".Nature.561(7723):368–373.arXiv:1801.05283.Bibcode:2018Natur.561..368C.doi:10.1038/s41586-018-0470-y.PMID 30185908.S2CID 3820071. ^Boschi,D.;Branca,S.;DeMartini,F.;Hardy,L.;Popescu,S.(9February1998)."ExperimentalRealizationofTeleportinganUnknownPureQuantumStateviaDualClassicalandEinstein-Podolsky-RosenChannels".PhysicalReviewLetters.80(6):1121–1125.arXiv:quant-ph/9710013.Bibcode:1998PhRvL..80.1121B.doi:10.1103/PhysRevLett.80.1121.S2CID 15020942. ^Riebe,M.;Häffner,H.;Roos,C.F.;Hänsel,W.;Benhelm,J.;Lancaster,G.P.T.;Körber,T.W.;Becher,C.;Schmidt-Kaler,F.;James,D.F.V.;Blatt,R.(2004)."Deterministicquantumteleportationwithatoms".Nature.429(6993):734–737.Bibcode:2004Natur.429..734R.doi:10.1038/nature02570.ISSN 1476-4687.PMID 15201903.S2CID 4397716. ^Chuang,Nielsen.QuantumComputationandQuantumInformation.pp. 26–27. ^Coecke,Bob(2009)."QuantumPicturalism".ContemporaryPhysics.51(2010):59–83.arXiv:0908.1787.Bibcode:2010ConPh..51...59C.doi:10.1080/00107510903257624.S2CID 752173. ^R.Penrose,Applicationsofnegativedimensionaltensors,In:CombinatorialMathematicsanditsApplications,D.~Welsh(Ed),pages221–244.AcademicPress(1971). ^ColinP.Williams(2010).ExplorationsinQuantumComputing.Springer.pp. 496–499.ISBN 978-1-4471-6801-0. ^Nielsen,MichaelA.;Chuang,Isaac(2010).QuantumComputationandQuantumInformation.Cambridge:CambridgeUniversityPress.pp. 26–28.ISBN 978-1-10700-217-3.OCLC 43641333. ^BobCoecke,"Thelogicofentanglement".ResearchReportPRG-RR-03-12,2003.arXiv:quant-ph/0402014(8pageshortversion)(full160pageversion) ^C.H.Bennett,G.Brassard,C.Crépeau,R.Jozsa,A.Peres,W.K.Wootters(1993)."TeleportinganUnknownQuantumStateviaDualClassicalandEinstein–Podolsky–RosenChannels".Phys.Rev.Lett.70(13):1895–1899.Bibcode:1993PhRvL..70.1895B.CiteSeerX 10.1.1.46.9405.doi:10.1103/PhysRevLett.70.1895.PMID 10053414.{{citejournal}}:CS1maint:usesauthorsparameter(link) ^Werner,ReinhardF.(2001)."Allteleportationanddensecodingschemes".J.Phys.A:Math.Gen.34(35):7081–7094.arXiv:quant-ph/0003070.Bibcode:2001JPhA...34.7081W.doi:10.1088/0305-4470/34/35/332.S2CID 9684671. ^Braunstein,S.L.;Kimble,H.J.(1998)."TeleportationofContinuousQuantumVariables"(PDF).Phys.Rev.Lett.80(4):869–872.Bibcode:1998PhRvL..80..869B.doi:10.1103/PhysRevLett.80.869. ^Furusawa,A.;Sørensen,J.L.;Braunstein,S.L.;Fuchs,C.A.;Kimble,H.J.;Polzik,E.S.(1998)."UnconditionalQuantumTeleportation".Science.282(5389):706–709.Bibcode:1998Sci...282..706F.doi:10.1126/science.282.5389.706.PMID 9784123.S2CID 14269209. ^W.DürandJ.I.Cirac(2000)."Multipartyteleportation".J.Mod.Opt.47(2–3):247–255.Bibcode:2000JMOp...47..247D.doi:10.1080/09500340008244039.S2CID 216116503. ^Yeo,Ye;Chua,WeeKang(2006)."TeleportationandDenseCodingwithGenuineMultipartiteEntanglement".Phys.Rev.Lett.96(6):060502.arXiv:quant-ph/0510029.Bibcode:2006PhRvL..96f0502Y.doi:10.1103/PhysRevLett.96.060502.PMID 16605974.S2CID 5170837. ^Karlsson,Anders;Bourennane,Mohamed(1998)."Quantumteleportationusingthree-particleentanglement".Phys.Rev.A.58(6):4394–4400.Bibcode:1998PhRvA..58.4394K.doi:10.1103/PhysRevA.58.4394. ^Deutsch,David;Hayden,Patrick(1999)."InformationFlowinEntangledQuantumSystems".ProceedingsoftheRoyalSocietyA:Mathematical,PhysicalandEngineeringSciences.456(1999):1759–1774.arXiv:quant-ph/9906007.Bibcode:2000RSPSA.456.1759H.doi:10.1098/rspa.2000.0585.S2CID 13998168. ^Gottesman,Daniel;Chuang,IsaacL.(November1999)."Demonstratingtheviabilityofuniversalquantumcomputationusingteleportationandsingle-qubitoperations".Nature.402(6760):390–393.arXiv:quant-ph/9908010.Bibcode:1999Natur.402..390G.doi:10.1038/46503.ISSN 0028-0836.S2CID 4411647. ^Luo,Yi-Han&Chen,Ming-cheng&Erhard,Manuel&Zhong,Han-Sen&Wu,Dian&Tang,Hao-Yang&Zhao,Qi&Wang,Xi-Lin&Fujii,Keisuke&Li,Li&Liu,Nai-Le&Nemoto,Kae&Munro,William&Lu,Chao-Yang&Zeilinger,Anton&Pan,Jian-Wei.(2020).Quantumteleportationofphysicalqubitsintologicalcode-spaces. ^"Efficientquantumgateteleportationinhigherdimensions"NdeSilva-arXivpreprintarXiv:2011.00127,2020-arxiv.org ^Pandey,Ravi&Prakash,Ranjana&Prakash,Hari.(2020).Highsuccessstandardquantumteleportationusingentangledcoherentstateandtwo-levelatomsincavities. General[edit] Reviewontheoryandexperiments: Pirandola,S.;Eisert,J.;Weedbrook,C.;Furusawa,A.;Braunstein,S.L.(2015)."AdvancesinQuantumTeleportation".NaturePhotonics.9(10):641–652.arXiv:1505.07831.Bibcode:2015NaPho...9..641P.doi:10.1038/nphoton.2015.154.S2CID 15074330. Theoreticalproposal: Bennett,CharlesH.;Brassard,Gilles;Crépeau,Claude;Jozsa,Richard;Peres,Asher;Wootters,WilliamK.(29March1993)."TeleportinganUnknownQuantumStateviaDualClassicalandEinstein–Podolsky–RosenChannels".Phys.Rev.Lett.70(13):1895–1899.Bibcode:1993PhRvL..70.1895B.CiteSeerX 10.1.1.46.9405.doi:10.1103/PhysRevLett.70.1895.ISSN 0031-9007.PMID 10053414.S2CID 6599630.Retrieved2021-12-06.Thisistheseminalpaperthatlaidouttheentanglementprotocol. Vaidman,L.(February1994)."TeleportationofQuantumStates".Phys.Rev.A.49(2):1473–1476.arXiv:hep-th/9305062.Bibcode:1994PhRvA..49.1473V.doi:10.1103/physreva.49.1473.PMID 9910380.S2CID 8356637. Shahriar,M.S.;et al.(2006)."WavelengthlockingviateleportationusingdistantquantumentanglementandBloch–Siegertoscillation".OpticsCommunications.266(1):349–353.Bibcode:2006OptCo.266..349S.doi:10.1016/j.optcom.2006.04.072.([1]) Brassard,G;Braunstein,S;Cleve,R(1998)."TeleportationasaQuantumComputation".PhysicaD.120(1–2):43–47.arXiv:quant-ph/9605035.Bibcode:1998PhyD..120...43B.doi:10.1016/s0167-2789(98)00043-8.S2CID 15178313. Peres,Asher(2003)."Whatisactuallyteleported?".arXiv:quant-ph/0304158. Rigolin,Gustavo(2005)."Quantumteleportationofanarbitrarytwo-qubitstateanditsrelationtomultipartiteentanglement".PhysicalReviewA.71(3):032303.arXiv:quant-ph/0407219.Bibcode:2005PhRvA..71c2303R.doi:10.1103/PhysRevA.71.032303.S2CID 53941971. Shi-BiaoZheng(2004)"SchemeforapproximateconditionalteleportationofanunknownatomicstatewithouttheBell-statemeasurement",Phys.Rev.A69,064302 Cardoso,WesleyB.;Avelar,A.T.;Baseia,B.;DeAlmeida,N.G.(2005)."TeleportationofentangledstateswithoutBell-statemeasurement".PhysicalReviewA.72(4):045802.arXiv:quant-ph/0604156.Bibcode:2005PhRvA..72d5802C.doi:10.1103/PhysRevA.72.045802.S2CID 11270460. Leuenberger,MichaelN.;Flatté,MichaelE.;Awschalom,D.D.(2005)."TeleportationofElectronicMany-QubitStatesEncodedintheElectronSpinofQuantumDotsviaSinglePhotons"(PDF).PhysicalReviewLetters.94(10):107401.Bibcode:2005PhRvL..94j7401L.doi:10.1103/PhysRevLett.94.107401.PMID 15783519.S2CID 26932056.Archivedfromtheoriginal(PDF)on7December2020. Pyrkov,AlexeyN.;Byrnes,Tim(2014)."Quantumteleportationofspincoherentstates:Beyondcontinuousvariablesteleportation".NewJournalofPhysics.16(7):073038.arXiv:1305.2479.Bibcode:2014NJPh...16g3038P.doi:10.1088/1367-2630/16/7/073038.S2CID 118699151. Wei,Yuchuan(2016)."Commenton"Fractionalquantummechanics"and"FractionalSchrödingerequation"".PhysicalReviewE.93(6):066103.arXiv:1607.01356.Bibcode:2016PhRvE..93f6103W.doi:10.1103/PhysRevE.93.066103.PMID 27415397.S2CID 20010251. Firstexperimentswithphotons: D.Bouwmeester,J.-W.Pan,K.Mattle,M.Eibl,H.Weinfurter,A.Zeilinger,ExperimentalQuantumTeleportation,Nature390,6660,575–579(1997). D.Boschi,S.Branca,F.DeMartini,L.Hardy,&S.Popescu,ExperimentalRealizationofTeleportinganUnknownPureQuantumStateviaDualclassicalandEinstein–Podolsky–Rosenchannels,Phys.Rev.Lett.80,6,1121–1125(1998) Kim,Y.-H.;Kulik,S.P.;Shih,Y.(2001)."Quantumteleportationofapolarizationstatewithacompletebellstatemeasurement".Phys.Rev.Lett.86(7):1370–1373.arXiv:quant-ph/0010046.Bibcode:2001PhRvL..86.1370K.doi:10.1103/PhysRevLett.86.1370.PMID 11178086.S2CID 6123495. Marcikic,I.;Tittel,W.;Zbinden,H.;Gisin,N.(2003)."Long-DistanceTeleportationofQubitsatTelecommunicationWavelengths".Nature.421(6922):509–513.arXiv:quant-ph/0301178.Bibcode:2003Natur.421..509M.doi:10.1038/nature01376.PMID 12556886.S2CID 4303767. Ursin,R.;et al.(August2004)."Communications:QuantumTeleportationLinkacrosstheDanube".Nature.430(7002):849.Bibcode:2004Natur.430..849U.doi:10.1038/430849a.PMID 15318210.S2CID 4426035. Firstexperimentswithatoms: Riebe,M.;Häffner,H.;Roos,C.F.;Hänsel,W.;Ruth,M.;Benhelm,J.;Lancaster,G.P.T.;Körber,T.W.;Becher,C.;Schmidt-Kaler,F.;James,D.F.V.;Blatt,R.(2004)."DeterministicQuantumTeleportationwithAtoms".Nature.429(6993):734–737.Bibcode:2004Natur.429..734R.doi:10.1038/nature02570.PMID 15201903.S2CID 4397716. Barrett,M.D.;Chiaverini,J.;Schaetz,T.;Britton,J.;Itano,W.M.;Jost,J.D.;Knill,E.;Langer,C.;Leibfried,D.;Ozeri,R.;Wineland,D.J.(2004)."DeterministicQuantumTeleportationofAtomicQubits".Nature.429(6993):737–739.Bibcode:2004Natur.429..737B.doi:10.1038/nature02608.PMID 15201904.S2CID 1608775. Olmschenk,S.;Matsukevich,D.N.;Maunz,P.;Hayes,D.;Duan,L.-M.;Monroe,C.(2009)."QuantumTeleportationbetweenDistantMatterQubits".Science.323(5913):486–489.arXiv:0907.5240.Bibcode:2009Sci...323..486O.doi:10.1126/science.1167209.PMID 19164744.S2CID 206516918. Externallinks[edit] Loophole-freeBelltest-KavliInstituteofNanoscience "Spookyactionandbeyond"–InterviewwithProf.Dr.AntonZeilingeraboutquantumteleportation.Date:2006-02-16 QuantumTeleportationatIBM PhysicistsSucceedInTransferringInformationBetweenMatterAndLight Quantumtelecloning:CaptainKirk'scloneandtheeavesdropper Teleportation-basedapproachestouniversalquantumcomputation Teleportationasaquantumcomputation Quantumteleportationwithatoms:quantumprocesstomography EntangledStateTeleportation Fidelityofquantumteleportationthroughnoisychannelsby TelePOVM—Ageneralizedquantumteleportationscheme EntanglementTeleportationviaWernerStates QuantumTeleportationofaPolarizationState TheTimeTravelHandbook:AManualofPracticalTeleportation&TimeTravel letterstonature:Deterministicquantumteleportationwithatoms QuantumteleportationwithacompleteBellstatemeasurement "WelcometothequantumInternet".ScienceNews.16August2008. Quantumexperiments–interactive. A(mostlyserious)introductiontoquantumteleportationfornon-physicists vteQuantuminformationscienceGeneral DiVincenzo'scriteria NISQera Quantumcomputing Timeline Cloud-based Quantuminformation Quantumprogramming Qubit physicalvs.logical Quantumprocessors Theorems Bell's Gleason's Gottesman–Knill Holevo's Margolus–Levitin No-broadcast No-cloning No-communication No-deleting No-hiding No-teleportation PBR Quantumthreshold Solovay–Kitaev Quantumcommunication Classicalcapacity entanglement-assisted Quantumcapacity Entanglementdistillation Monogamyofentanglement LOCC Quantumchannel Quantumnetwork Quantumcryptography Quantumkeydistribution BB84 SARG04 Three-stagequantumcryptographyprotocol QuantumSecretSharing Quantumteleportation Superdensecoding Quantumalgorithms Bernstein–Vazirani Deutsch–Jozsa Grover's Quantumcounting Quantumphaseestimation Shor's Simon's Amplitudeamplification Linearsystemsofequations Quantumannealing QuantumFouriertransform Quantumneuralnetwork Universalquantumsimulator Quantumcomplexitytheory BQP EQP QIP QMA PostBQP Quantumcomputingmodels Adiabaticquantumcomputation Differentiablequantumcomputing One-wayquantumcomputer clusterstate Quantumcircuit Quantumlogicgate QuantumTuringmachine Topologicalquantumcomputer Quantumerrorcorrection Codes CSS Quantumconvolutional stabilizer Shor Steane Toric gnu Entanglement-assistedquantumerrorcorrection PhysicalimplementationsQuantumoptics Bosonsampling CavityQED CircuitQED Linearopticalquantumcomputing KLMprotocol Ultracoldatoms Opticallattice Trappedionquantumcomputer Spin-based KaneQC SpinqubitQC Nitrogen-vacancycenter NuclearmagneticresonanceQC Superconductingquantumcomputing Chargequbit Fluxqubit Phasequbit Transmon Quantumprogramming OpenQASM-Qiskit-IBMQX Quil-Forest/RigettiQCS Cirq Q# libquantum manyothers... Quantummechanicstopics vteQuantummechanicsBackground Introduction History Timeline Classicalmechanics Oldquantumtheory Glossary Fundamentals Bornrule Bra–ketnotation Complementarity Densitymatrix Energylevel Groundstate Excitedstate Degeneratelevels Zero-pointenergy Entanglement Hamiltonian Interference Decoherence Measurement Nonlocality Quantumstate Superposition Tunnelling Scatteringtheory Symmetryinquantummechanics Uncertainty Wavefunction Collapse Wave–particleduality Formulations Formulations Heisenberg Interaction Matrixmechanics Schrödinger Pathintegralformulation Phasespace Equations Dirac Klein–Gordon Pauli Rydberg Schrödinger Interpretations Interpretations Bayesian Consistenthistories Copenhagen deBroglie–Bohm Ensemble Hidden-variable Local Many-worlds Objectivecollapse Quantumlogic Relational Transactional VanNeumann-Wigner Experiments Bell'sinequality Davisson–Germer Delayed-choicequantumeraser Double-slit Franck–Hertz Mach–Zehnderinterferometer Elitzur–Vaidman Popper Quantumeraser Stern–Gerlach Wheeler'sdelayedchoice Science Quantumbiology Quantumchemistry Quantumchaos Quantumcosmology Quantumdifferentialcalculus Quantumdynamics Quantumgeometry Quantummeasurementproblem Quantumstochasticcalculus Quantumspacetime Technology Quantumalgorithms Quantumamplifier Quantumbus Quantumcellularautomata Quantumfiniteautomata Quantumchannel Quantumcircuit Quantumcomplexitytheory Quantumcomputing Timeline Quantumcryptography Quantumelectronics Quantumerrorcorrection Quantumimaging Quantumimageprocessing Quantuminformation Quantumkeydistribution Quantumlogic Quantumlogicgates Quantummachine Quantummachinelearning Quantummetamaterial Quantummetrology Quantumnetwork Quantumneuralnetwork Quantumoptics Quantumprogramming Quantumsensing Quantumsimulator Quantumteleportation Extensions Casimireffect Quantumstatisticalmechanics Quantumfieldtheory History Quantumgravity Relativisticquantummechanics Related Schrödinger'scat inpopularculture Quantummysticism Category Physicsportal Commons vteEmergingtechnologiesFieldsQuantum algorithms amplifier bus cellularautomata channel circuit complexitytheory computing clock cryptography post-quantum dynamics electronics errorcorrection finiteautomata imageprocessing imaging information keydistribution logic logicgates machine machinelearning metamaterial network neuralnetwork optics programming sensing simulator teleportation Other Anti-gravity Acousticlevitation Cloakofinvisibility Digitalscenttechnology Forcefield Plasmawindow Immersivevirtualreality Magneticrefrigeration Phased-arrayoptics Thermoacousticheatengine Category List AuthoritycontrolNationallibraries France(data) Germany Israel UnitedStates Other FacetedApplicationofSubjectTerminology SUDOC(France) 1 Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Quantum_teleportation&oldid=1092173329" Categories:QuantuminformationscienceQuantumcomputingEmergingtechnologiesTeleportationHiddencategories:CS1maint:usesauthorsparameterArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataUsedmydatesfromMarch2019Articlescontainingpotentiallydatedstatementsfrom2015AllarticlescontainingpotentiallydatedstatementsArticlescontainingpotentiallydatedstatementsfromSeptember2015ArticleswithBNFidentifiersArticleswithGNDidentifiersArticleswithJ9UidentifiersArticleswithLCCNidentifiersArticleswithFASTidentifiersArticleswithSUDOCidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommons Languages AlemannischالعربيةБеларускаяБългарскиCatalàČeštinaDanskDeutschEestiEspañolفارسیFrançaisGaeilgeGalegoՀայերենBahasaIndonesiaItalianoעבריתLatinaമലയാളംNederlands日本語ਪੰਜਾਬੀPolskiPortuguêsRomânăРусскийSimpleEnglishСрпски/srpskiSuomiSvenskaТатарча/tatarçaTürkçeУкраїнськаTiếngViệt中文 Editlinks
延伸文章資訊
- 1Quantum Teleportation - Qiskit
Quantum teleportation is designed to send qubits between two parties. We do not have the hardware...
- 2Quantum teleportation with one classical bit | Scientific Reports
Quantum teleportation is a strikingly curious quantum phenomenon with myriads of applications ran...
- 3Quantum Internet Is a Step Closer After ... - Singularity Hub
One workaround is to exploit another quantum phenomenon called teleportation. This works much lik...
- 4Quantum teleportation expands beyond neighbouring nodes
Physicists in the Netherlands have shown for the first time that quantum information can be relia...
- 5Quantum Teleportation - an overview ... - ScienceDirect.com
Quantum teleportation allows two parties that are far apart to exchange unknown qubits among them...