A novel metamaterial-based antenna for on-chip ... - Nature

文章推薦指數: 80 %
投票人數:10人

In this paper, we present a novel antenna design based on metamaterial properties that operates in the millimeter wave regime. This design ... Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature scientificreports articles article Anovelmetamaterial-basedantennaforon-chipapplicationsforthe72.5–81 GHzfrequencyrange DownloadPDF DownloadPDF Subjects ElectricalandelectronicengineeringMaterialsfordevices AbstractInthispaperwepresentanovelmetamaterial-basedantennasimulatedusingHFSS.Theunitcellparameterswereextractedusingperiodicboundaryconditionsandwave-portexcitation.ThemetamaterialismagneticallycoupledtotheCPWline,theinducedcurrentinthehexagonalringgivesrisetoafieldperpendiculartotheincidentone.TheantennacanbemodeledbyanLCcircuit.Thisdesignachievesasignificantimpedancebandwidthof8.47 GHz(S11 = − 10 dBfrom72.56 GHzto81.03 GHz),andaminimumreturnlossof− 40.79 dBat76.89 GHz,whichclearlyindicatesgoodimpedancematchingto50Ω.Theproposedantennaoffersgainsfrom4.53to5.25dBi,withradiationefficienciesbetterthan74%.Compactness,simpledesignlayout,anoveldesign,andgoodradiationcharacteristicsforthisantennaarethemaincontributionsofthiswork.Theantennacanbebuiltontopofa300 µmthicksiliconwafer,forapplicationonHR-SOI-CMOStechnology.Whencomparedtootherantennadesignsforthesamefrequencyband,theproposedantennaachievesverygoodperformance.Thisdesignissuitableforthereceptionstageoflong-rangeautomobileradarsystems,duetoitswideHPBW,aswellasE-bandapplications,suchasbackhaulsystems. IntroductionTomeetthehugepublicdemandforcompact,wirelesssystems,antennas,besidetheothernecessaryelectroniccircuitry,mustbeintegratedonthesamesiliconchip,andthusresearchonon-chipantennas(AoC)hasbecomeaveryimportantfieldofendeavorinrecentyears1,2,3,4,5,6,7,8,justtomentionafew.On-chipantennasofferfullmonolithicintegrationofreceiversandtransmitters,withgreatrepeatability,sizereduction,lowpowerconsumption,andareductionofexternalinterconnections,suchasbondwiresorsolderballs9.Infact,AoChavebecomeaverydynamicfieldofendeavor,astheslewofrecentlypublishedreportsshows,spanningdifferenttechniquessuchascouplingandexcitationtechniques1,2,3,isolation4,circuitdesign5,andtheuseofmetamaterialandmetasurfaceproperties6,7,8.Ofthemanyapplicationsthathavebeenaddressedbydifferentresearchgroups,onethatfallsinthe76–81 GHzisvehicularradar10.Vehicularradarsystemsaredividedintotwomajorareas,thesignalprocessingandpowersupplyunit;andtheRFfront-end,whichcontainstheradartransceiverdeviceandoneormoreTXandRXantennas11.Infact,on-chipantennasaregoodcandidatesforthesesystems,mainlyduetotheircompactsize,lowpowerconsumptionandthepossibilitytofullyintegratetheRFfront-end.Itiswellknown,however,thatbulksiliconwithtypicalconductivitiesintherange1–10S/mforstandardCMOSprocessesleadstoverypoorantennaperformance,e.g.,typicalantennagainsof− 10dBi,duetosubstratelosses12.Overthepastfewyears,inordertoimprovethegain,directivity,andradiationefficiency,whileovercomingthelimitationsofsiliconsubstratesandmaintainingreducedsize,differenttypesofmetamaterialshavebeenproposed,suchasArtificialMagneticConductors,AMC;HighImpedanceSurfaces,HIS;ElectromagneticBand-Gapstructures,EBG;DoubleNegativeMaterials,DNG;ZerothOrderResonators,ZOR;andvarioustypesofmetasurfaces13,14,15,16,17,18,19,20.Inotherworks,externalresonators21,orlensesareused22,23,micromachiningisperformedaroundandbelowtheantenna24,thedopingprofilearoundtheantennaistailored12,itspositionisoptimized25,reflectorsareemployed26,andhighresistivity(HR)substratesareused27,28.Notwithstanding,themajorityofon-chipantennadevelopmentshavebeenmadeonSOI(Silicon-On-Insulator)substrateswithHRsilicon,butachievingantennagainsintherangeof− 3to3dBi.Suchlowgainvaluesareappropriateforshort-rangecommunications,uptoonemeter;typicalapplicationsarethehigh-dataratetransferandsynchronizationbetweensmartwirelessdevices(smart-phone,laptop,externalharddrives)usingawirelessUSB-likeconnection12.Inthispaper,wepresentanovelantennadesignbasedonmetamaterialpropertiesthatoperatesinthemillimeterwaveregime.Thisdesignresemblesthecenterofaflowerwithitspetals,andthuswerefertoitasa“FlowerMetamaterialAntenna”.Unlikeclassicandtraditionalantennas,thisoneisbasedonanewmetamaterialdesigntooperatefrom75to81 GHzonaHRsiliconwafer,anditisexcitedbyproximitywithacoplanarwaveguide(CPW),coveringthespectrumforlong-rangeautomotiveradars10,attaininghighergainstothoseobtainedwithSOItechnology,andachievinggoodradiationefficiency.Flower-metamaterialantennadesignThetopviewoftheproposedantennaisshowninFig. 1a,b.TheCPWlineusedtoexcitethemetamaterialisonahighermetallayeraboveathinlayerofsilicondioxide.Tomatchtheantenna’sinputimpedance,thewidthofthefeedline(Wt)iscalculatedat90 µm,andthegapbetweenthefeedandthegroundlineoneitherside(S)isfixedas45 µm.ThisCPWfeedishighlypreferredoveramicrostriplineinon-chipantennadesignsinceitexhibitslowerlosseswhentheselinesaredepositeddirectlyonhighresistivitysiliconsubstratesandarelesssensitivetobulkparametervariationssuchaschangesincarrierconcentration27.Figure1Topviewofproposedantenna(a)flower-metamaterialantennaandfeedline(CPW),(b)flower-metamaterialdesignand(c)cross-sectionalviewofproposedantenna.FullsizeimageThedesignparametersfortheproposedantennawereparametricallyoptimizedusingafull-wavesimulatortoobtainthedesiredresults,whicharelistedinTable1.Table1Designparameters.FullsizetableFigure 1cdepictsacrosssectionalviewoftheproposedstructure.A300 µmthickhighresistivitysiliconwafer(ρ ≥ 5kΩ cm,\(\tan\delta\)=0.05and\({\varepsilon}_{r}\)=11.8)wasusedasthesubstrate.Themetamaterialismadeofa2 µmthickcopper(Cu)layer.Inbetweenthesubstrateandtheradiatingstructure,thereisaninsulatinglayer,namelySiO2(\({\varepsilon}_{r}\)=3.9and\(\tan\delta\)=0.001)withathicknessof25 µm,andthefeedline(CPW)isplaced23 µmawayfromtheradiatingstructureinametallayerembeddedinaSiO2layer.Besides,a5 µmthickmetallayerisusedasareflectoronthebackside.TheFlower-Metamaterialstructurewaspreviouslydesignedwiththefull-wavesimulatorwithoutthefeedlinetoensureitbehavesasametamaterialstructure.Thedesignwasperformedfollowingthemethodologyproposedin29,andsomedetailsarepresentedin“Methods”section.Figure 2showstherealandimaginarypartsofthepermittivityandpermeabilityofthedesign,demonstratingitsmetamaterialbehavior(Left-Handedmaterial)inthefrequencybandofinterest,afteralengthysimulationprocess.Figure2Complexpermittivity(ε)andpermeability(μ)ofproposedflowergeometry.FullsizeimageMoreover,whentheunitcellissimulatedusingFloquetports,theflowermetamaterialpresentsaninterestingbehavior,whichisshowninFig. 3.From72to81 GHz,themodessupportedbytheflowerareTE00andTM00,andothermodes(m,n;differentfromzero)areattenuated(> 30 dB/mm).Theflowerunitcellchangesdepropagationdirection,curvesthedirectionofelectricandmagneticfields,andpartiallyeliminatesthemagneticfieldconcentrationonthesiliconwafer,confiningitmostlyonandabovetheflower.Figure3Electricalandmagneticfieldsfor(a)TE00mode,and(b)TM00mode.FullsizeimageTheoperationmechanismisasfollows:whentheCPWlineispositionedbelowthemetamaterialcell,themetamaterialcellismagneticallycoupledtotheCPWline.Themagneticfieldlines(oftheCPWline)thatpassthroughthehexagonalringinduceacurrentthatgivesrisetoanelectricfieldinadirectionperpendiculartotheincidentwave.Thismagneticcoupling,theinducedcurrent,andtheelectricandmagneticfieldsareshowninFig. 4.Figure4Operationmechanism:(a)magneticcoupling,(b)inducedcurrent,and(c)fieldsthroughoutthestructure.FullsizeimageThedesignoftheproposedunitcellisalengthyprocessandmanyvariablesplayanimportantrole.However,abriefdesignevolutionispresentedbelowwithonly5steps,comparingthreeimportantfiguresofmeritconsideredduringthedesignprocess.ResultsThissectiondemonstratesthattheproposeddesignhassignificantpotentialforon-chipradarsystems,especiallyforthereceptionstage,duetoitswideHPBW,highgain,smallsizeandeaseoffabrication.Inthecaseofthetransmitterstage,amoderatetohighgain(betterthan3dBi)andanarrowbeamarerequired,andsomeimprovementstothedesignwouldbenecessarytosatisfythem.Figure 5showsthesimulatedreturnlossoftheproposednovelflowermetamaterial-basedantennaandimpedancebandwidth(|S11|≤ − 10 dB)of8.47 GHz,from72.56 GHzto81.03 GHz,consideringareferenceimpedanceof50Ω.Theelectricalandmagneticplanes(H-planeφ = 0°andE-planeφ = 90°)radiationparameters(inmagnitude)arepresentedinFig. 6,whichprovethatthedesigncoverstheentirefrequencybanddestinedforlong-rangeradars(76–81 GHz)andpartiallytheE-band(71–86 GHz).Figure5Briefdesignevolutionoftheproposedflowermetamaterial-basedantenna,andcomparisonofthreeofthefiguresofmeritversusfrequency.FullsizeimageFigure6Electric(leftside)andmagnetic(rightside)fieldmagnitudeatthreefrequencypoints:72.5 GHz(lower),77 GHz(central),and81 GHz(higher).FullsizeimageThe2DradiationpatternsareshowninFig. 7forthreefrequencypoints(lower,central,andhigher),remainingalmostunchangedthroughoutthefrequencyrangefrom72.5to81 GHz,withonlyonebeamandmaintainingsymmetryacrossthebandwidth.Thefront-backratioiscloseto19 dB,butahigherF/Bratiocanbeobtainedbyincreasingthereflectorplanesize.Figure7Normalizedradiationpatternsatthreefrequencypoints:72.5 GHz(lower),77 GHz(central),and81 GHz(higher).FullsizeimageThecomparisonofco-polarizationandcross-polarization,withandwithoutflowermetamaterial,isshowninFig. 8.Thisdesignhascross-polarizationvalueslowerthan−30 dB,andco-polarizationgreaterthan4.5 dB,whichguaranteesthatthewavesarealmostpurelylinearlypolarizedtotheright,consideringthevaluesofaxialratio(AR → ∞)andRHCP-LHCPgains,obtainedfromthefullwavesimulator.Figure8Comparisonofcross-polarizationandco-polarizationversusfrequencyofthedesignwithandwithoutproposedflowermetamaterial.FullsizeimageFurthermore,thepeakgainsshowninFig. 5showthattheproposeddesignimprovesgainby32%at72.5 GHz,31.16%at73 GHz,27.94%at74 GHz,29%at75 GHz,23.51%at76 GHz,18.79%at77 GHz,14.61%at78 GHz,10.63%at79 GHz,6.8%at80 GHzand3.6%at81 GHz.Likewise,theradiationefficiencyisimprovedfrom72.5 GHzto78 GHz,andfrom79to81 GHzitdecreasesslightly,butremainsabove74%.Furthermore,thesecurvesshowthattheflowermaterialactsasanLCcircuit,duetotheconcentrationsofelectricandmagneticfieldsinthedesign.Anequivalentcircuitforthemetamaterial-basedantennawasderived,anditisshowninFig. 9a.Thelumpedelementsvaluesofthemodelare:\({L}_{L}=1.56pH,\;{C}_{L}=2.53pF,\;{L}_{1}={L}_{2}=10.1fF,\;{C}_{1}=20fF,\;{C}_{2}={C}_{3}=66pF,\;{C}_{4}=0.1fF,\;{C}_{cpw}=24.8fF,\;{L}_{cpw}/4=44.45pH\).Thecomparisonbetweenmodelandfull-wavesimulationsisshowninFig. 9b.Figure9(a)Proposedequivalentcircuit,and(b)comparisonofequivalentcircuitwithfull-wavesimulationresults.FullsizeimageItisnoteworthythatthisisanoriginaldesign,whichhasmanyadvantagesoverotherreportedantennasforthesamefrequencyrange13,14,21,22,30,31,whosecharacteristicsarelistedinTable2.Table2Comparisonwithrelatedworks.FullsizetableItisimportanttoconsiderthatthedesignsonceramicsubstratesattainahighergain,sincethesematerialshavelowerlossesthanasemiconductorsubstrate.Thesedesigns,however,occupyaverylargeareaandhaveanarrowerbandwidththanourdesign.Ontheotherhand21,haslowerefficiency,occupiesalargerareaandvolume,andisbasedonaquartzcrystal.Thedesignin13hasahigherbandwidthanddoesnotoccupyalargearea,butthegainandcouplingattheinputarelow.Theantennareportedby14isapproximately13timeslargerthantheonepresentedhere,andachievesagainofjust1.46timesthatoftheoneobtainedwiththeproposeddesign,inadditiontopresentinga1 GHzbandwidth.Finally,thehalfpowerbeamwidthinallthecasesislowerthantheoneobtainedinourdesign,whichmeansthatthosedesignshaveveryfinebeams,whichareappropriateforthetransmissionstage,butnotforRxantennas,whichrequirealargefieldofview32.Additionally,whentheproposeddesigniscomparedwithdesignsworkingatTHzrange4,8,thisdesignhaslowergain,sincebothdesigns4,8usepolyimideassubstrate;thereforeitistobeexpectedthatthegainswillbehigher,becausethesubstratehasalowerlosscoefficient.Comparedwith8theproposednoveldesignhashigherefficiency,andis36timessmaller,andcomparedwith4,ourdesignis270timessmaller,evenwhentheoperatingfrequencyofourdesignislower.DiscussionHereinwehavepresentedanovelflower-metamaterialantennadesignedtoworkfrom72.5to81 GHz.Thisantennadesign,onaHR-Siliconwafer,hasmediumtohighgain,acceptabledirectivity,goodradiationefficiency,widebandwidth,andcompactsize,whichisidealforon-chipautomobileradarapplications,particularlyforthereceptionstage,consideringitswideHPBW.Theradiationpatternshowsonlyonebeamfrom72.5to81 GHz.AhigherF/Bratiocanbeobtainedbyincreasingthereflectorplanesize,andthepolarizationisalmostpurelylinear,duetogoodvaluesofcross-polarizationandco-polarizationinalltherange.Thesuggestedfabricationprocessforprototypingoftheproposeddesignisasfollows:thegroundplane,flowermetamaterial,andfeedlinecanbeof1–2 μmofcopperoraluminum.Thethicklayerofsilicondioxidecanbeobtainedfromwetthermaloxidationprocess,butalsocanbereplacedwithothermaterial,suchaspolyamideorpolyimide,andsomedimensionsshouldbeadjustedtoensuretheimpedancebandwidthfrom72.5to81 GHz.Thenewproposedantennabasedontheso-called“flowermetamaterials”canbeintegratedintoaHR-SOI-CMOSprocess,inthelastlayeroftheBEOL,thatis,becauseaseparationbetweentheexcitationlineandmetamaterialof23μmisrequired,whenSiO2isusedbetweenbothmetallayers.MethodsAllthefull-wavesimulationswereperformedusingAnsyselectromagneticssuite2021/R1(HighFrequencyStructureSimulator,HFSS)(https://www.ansys.com/products/electronics/ansys-hfss).Forthedesignandextractionoftheparametersofthemetamaterialunitcell,theprocesspresentedinFig. 10wasfollowed.Isaniterativeprocess.AdditionalsimulationswereperformedwithFloquetportsandmaster–slaveconditionstocalculatethemodesthattheflowermetamaterialsupports,aswellasthefields,whicharepresentedinFig. 3.Figure10Methodologyfordesignandextractionofparametersofunitcellmetamaterial.FullsizeimageFortheradiationparametersAnsysisalsoused,withalumpedportfortheexcitationwithinputimpedanceof50Ωandradiationboxwithdimensionsbetterthan\({{\varvec{\lambda}}}_{0}\;(\text{at}\;80\;\text{GHz})\).Multiplesolutionfrequenciesareusedinthesimulationtoguaranteeaccuracyacrossthefrequencysweep.TheequivalentcircuitwasmodeledwithAdvancedDesignSystem(ADS).Theproposedequivalentcircuitisbasedontransmissionlinetheory.ThethreestageshowninFig. 9a(inblueboxes)representtheflowerdividedinthreeparts;\({{\varvec{C}}}_{4}\)representsthecapacitancebetweenthepetalsoftheflowershape;\({{\varvec{L}}}_{{\varvec{L}}}\)and\({{\varvec{C}}}_{{\varvec{L}}}\)aretheprincipalelementsofthisequivalentcircuit,bothrepresentstheelectromagneticfieldsatresonantfrequency;and\({{\varvec{L}}}_{{\varvec{c}}{\varvec{p}}{\varvec{w}}}/4\)and\({{\varvec{C}}}_{{\varvec{c}}{\varvec{p}}{\varvec{w}}}\)arethelumpedelementsoftheCPWline.Theterm\({{\varvec{L}}}_{{\varvec{c}}{\varvec{p}}{\varvec{w}}}/4\)representstheinductancewhentheflowerismagneticallycoupledtothetransmissionline.ConclusionsHereinwehavepresentedanovelflower-metamaterialantennaworkingfrom72.5to81 GHz.ThisantennadesignoverHR-Siliconwaferhasmedium–highgain(betterthan4.5dBi),goodradiationefficiency(higherthan74%),wideimpedancebandwidth(8.47 GHz),andcompactsize(1mm2).Moreover,herewepresentanequivalentcircuitofthenovelflowermetamaterial-basedantenna.TheproposeddesignissuitableforapplicationsofE-band,suchasbackhaulsystems,andautomobileradarsystems. ReferencesAlibakhshikenari,M.etal.High-gainon-chipantennadesignonsiliconlayerwithapertureexcitationforterahertzapplications.IEEEAntennasWirel.Propag.Lett.19,1576–1580.https://doi.org/10.1109/LAWP.2020.3010865(2020).ADS  Article  GoogleScholar  Alibakhshikenari,M.,Virdee,B.S.,Althuwayb,A.A.,Mariyanayagam,D.F.&Limiti,E.Compactandlow-profileon-chipantennausingundersideelectromagneticcouplingmechanismforterahertzfront-endtransceivers.Electronics10,1–7.https://doi.org/10.3390/electronics10111264(2021).Article  GoogleScholar  Fan,Y.,Xie,S.,Luo,Y.&Ma,K.Gainandradiationefficiencyenhanceterahertzon-chipantennabasedon0.13-mmSiGeBiCMOS.InProceedingsofthe14thUK-Europe-ChinaWorkshoponMillimeter-WavesandTerahertzTechnologies(UCMMT).1–3,https://doi.org/10.1109/UCMMT53364.2021.9569947(2021).Alibakhshikenari,M.etal.High-isolationantennaarrayusingSIWandrealizedwithagraphenelayerforsub-terahertzwirelessapplications.Sci.Rep.11,1–14.https://doi.org/10.1038/s41598-021-87712-y(2021).CAS  Article  GoogleScholar  Mustacchio,C.,Boccia,L.,Arnieri,E.&Amendola,G.Againlevelingtechniqueforon-chipantennasbasedonsplit-ringresonators.IEEEAccess.9,90750–90756.https://doi.org/10.1109/ACCESS.2021.3091777(2021).Article  GoogleScholar  Alibakhshikenari,M.etal.Studyofon-chipantennadesignbasedonmetamaterial-inspiredandsubstrate-integratedwaveguidepropertiesformillimeter-waveandTHzintegrated-circuitapplications.J.InfraredMillim.TerahertzWaves.42,17–28.https://doi.org/10.1007/s10762-020-00753-8(2020).CAS  Article  GoogleScholar  Althuwayb,A.A.etal.Antennaon-chip(AoC)designusingmetasurfaceandSIWtechnologiesforTHzwirelessapplications.Electronics10,1–8.https://doi.org/10.3390/electronics10091120(2021).Article  GoogleScholar  Alibakhshikenari,M.etal.High-gainmetasurfaceinpolyimideon-chipantennabasedonCRLH-TLforsub-terahertzintegratedcircuits.Sci.Rep.10,1–9(2020).Article  GoogleScholar  Chen,Z.N.,Liu,D.,Nakano,H.,Qing,X.&Zwick,T.HandbookofAntennaTechnologies2445–2498(SpringerSingapore,2016).Book  GoogleScholar  FederalCommunicationsCommission.Radarservicesinthe76–81GHzbandReportandOrder–ETDocket.FCC-CIRC1707-07.15–26,https://docs.fcc.gov/public/attachments/DOC-345476A1.pdf.(2017).Rao,S.MIMOradar.TexasInstrumentsApplicationReportSWRA554A.https://www.ti.com/lit/an/swra554a/swra554a.pdf?ts=1620165925990&ref_url=https%253A%252F%252Fwww.google.com%252(2018).Dussopt,L.Integratedantennasandantennaarraysformillimetre-wavehighdata-ratecommunications.InProceedingsofthe2011LoughboroughAntennas&PropagationConference.1–5,https://doi.org/10.1109/LAPC.2011.6114000(2011).Mustacchio,C.,Boccia,L.,Arnieri,E.&Amendola,G.Gainenhancementtechniqueforon-chipmonopoleantenna.InProceedingsofthe50thEuropeanMicrowaveConference(EuMC).650–653,https://doi.org/10.23919/EuMC48046.2021.9338160(2021).Li,Q.,Li,W.,Ren,B.,Zhang,L.&Zhang,B.Asilicon-basedon-chipantennaoperatingat77GHz.In2019Photonics&ElectromagneticsResearchSymposium-Fall(PIERS-Fall).2848–2852,https://doi.org/10.1109/PIERS-Fall48861.2019.9021682(2019)Dong,Y.&Itoh,T.Metmaterial-basedantennas.Proc.IEEE100,2271–2285(2012).CAS  Article  GoogleScholar  Manh,C.T.,Ouslimani,H.H.,Guida,G.,Priou,A.,Teillet,H.&Daden,J.Y.Metamaterialstructuresforcompactmillimeterwaveantennaapplications.InProceedingsofProgressinElectromagneticsResearchSymposium.1306–1312(2008).Wasel,H.&Guoping,Z.Enhancing5GpatcharrayantennagainusingDNGmetamaterial.Int.J.EnergyEng.8,93–96.https://doi.org/10.5923/j.ijee.20180804.02(2018).Article  GoogleScholar  Devapriya,A.T.&Robinson,S.Investigationonmetamaterialantennaforterahertzapplications.J.Microwav.Optoelectron.Electromagn.Appl.18,377–389.https://doi.org/10.1590/2179-10742019v18i31577(2019).Article  GoogleScholar  Badawe,M.E.,Almoneef,T.S.&Ramahi,O.M.Atruemetasurfaceantena.Sci.Rep.6,1–8.https://doi.org/10.1038/srep19268(2016).CAS  Article  GoogleScholar  Sajin,G.I.&Mocanu,I.A.“MetamaterialCRLHantennasonsiliconsubstrateformillimeter-waveintegratedcircuits.Int.J.AntennasPropag.1–9,2012.https://doi.org/10.1155/2012/593498(2012).Article  GoogleScholar  Hasch,J.,Wostradowski,U.,Gaier,S.&Hansen,T.77GHzradartransceiverwithdualintegratedantennaelements.InGermanMicrowaveConferenceDigestofPapers.280–283,https://ieeexplore.ieee.org/document/5498268(2010).Nagaishi,H.,Kuriyama,A.,Kuroda,H.&Kitayama,A.HornandprismantennafordualrangeanddualFOVautomotiveradarusing77-GHzband.InProceedingsofthe18thInternationalSymposiumonAntennaTechnologyandAppliedElectromagnetics(ANTEM).1–2,https://doi.org/10.1109/ANTEM.2018.8572918(2018).Cheema,H.M.&Shamim,A.Thelastbarrier:On-chipantennas.IEEEMicrow.Mag.14,79–91.https://doi.org/10.1109/MMM.2012.2226542(2013).Article  GoogleScholar  InfineonTechnologiesAG.,Meyer,T.,Hartner,W.&Wojnowski,M.On-chipantennasforsemiconductordevicesandrelatedmanufacturingmethods.UnitedStatesPatentNo.US2019/0221531A1.https://patents.google.com/patent/US20190221531A1/en(2019).Ng,H.J.,Wang,R.&Kissinger,D.On-chipantennasinSiGeBiCMOStechnology:challenges,stateoftheartandfuturedirections.InProceedingsofthe2018Asia-PacificMicrowaveConference(APMC).621–623,https://doi.org/10.23919/APMC.2018.8617626(2018).Hedayati,M.K.etal.Challengesinon-chipantennadesignandintegrationwithRFreceiverfront-endcircuitryinnanoscaleCMOSfor5Gcommunicationsystems.IEEEAccess.7,43190–43204.https://doi.org/10.1109/ACCESS.2019.2905861(2019).Article  GoogleScholar  Lederer,D.&Raskin,J.P.SubstratelossmechanismsformicrostripandCPWtransmissionlinesonlossysiliconwafers.InProceedingsofthe2002IEEEMTT-SInternationalMicrowaveSymposium,Seattle.685–688,https://doi.org/10.1109/MWSYM.2002.1011714(2002).Singh,K.,Nirmal,A.V.&Sharma,S.V.Studythelossofmicrostriponsilicon.MicrowavesandRF.https://www.mwrf.com/technologies/components/article/21848246/study-the-loss-of-microstrip-on-silicon(2017).Numan,A.B.&Sharawi,M.S.Extractionofmaterialparametersformetamaterialsusingafull-wavesimulator[educationcolumna].IEEEAntennasPropag.Mag.55(5),202–211.https://doi.org/10.1109/MAP.2013.6735515(2013).ADS  Article  GoogleScholar  Dong,J.&Zhang,L.Reconfigurableantennaforautomotiveradarsystem.InProceedingsofthe2019IEEEInternationalSymposiumonAntennasandPropagationandUSNC-URSIRadioScienceMeeting.1155–1156,https://doi.org/10.1109/APUSNCURSINRSM.2019.8888847(2019).Xie,J.,Wu,Q.,Yu,C.,Wang,H.&Hong,W.WidebandSIWcavity-backedslotarrayantennawithflatgaincharacteristicsfor79GHzautomotiveradar.InProceedingsofthe13thEuropeanConferenceonAntennasandPropagation(EuCAP).1–4https://ieeexplore.ieee.org/document/8739815(2019).Sickinger,F.,Weissbrodt,E.&Vossiek,M.76–81GHzLTCCantennaforanautomotiveminiatureradarfrontend.Int.J.Microw.Wirel.Technol.10,729–736.https://doi.org/10.1017/S1759078718000855(2018).Article  GoogleScholar  DownloadreferencesAcknowledgementsTheauthorswouldliketoexpresstheirgratitudetowardsMexicanNationalCouncilforScienceandTechnology(CONACyT)bythefinancialsupportunderGrant852217andGrant285199.FundingThisworkwassupportedinpartbytheMexicanNationalCouncilforScienceandTechnology(CONACyT)underGrant285199andGrant852217.AuthorinformationAuthorsandAffiliationsElectronicsDepartment,InstitutoNacionaldeAstrofísica,ÓpticayElectrónica(INAOE),72840,Puebla,MexicoKarenN.Olan-Nuñez & RobertoS.Murphy-ArteagaAuthorsKarenN.Olan-NuñezViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarRobertoS.Murphy-ArteagaViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsK.N.conceivedtheidea,designedthestructure,andwrotetheprincipalideas.R.Mrevisedthemanuscript,contributedsomeideas,andsupervisedthework.CorrespondingauthorCorrespondenceto RobertoS.Murphy-Arteaga.Ethicsdeclarations Competinginterests Theauthorsdeclarenocompetinginterests. AdditionalinformationPublisher'snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.Rightsandpermissions OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicence,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicence,visithttp://creativecommons.org/licenses/by/4.0/. ReprintsandPermissionsAboutthisarticleCitethisarticleOlan-Nuñez,K.N.,Murphy-Arteaga,R.S.Anovelmetamaterial-basedantennaforon-chipapplicationsforthe72.5–81 GHzfrequencyrange. SciRep12,1699(2022).https://doi.org/10.1038/s41598-022-05829-0DownloadcitationReceived:08September2021Accepted:12January2022Published:01February2022DOI:https://doi.org/10.1038/s41598-022-05829-0SharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative CommentsBysubmittingacommentyouagreetoabidebyourTermsandCommunityGuidelines.Ifyoufindsomethingabusiveorthatdoesnotcomplywithourtermsorguidelinespleaseflagitasinappropriate. DownloadPDF Advertisement Explorecontent Researcharticles News&Comment Collections Subjects FollowusonFacebook FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal AboutScientificReports Journalpolicies Guidetoreferees Contact CallsforPapers Editor'sChoice GuestEditedCollections ScientificReportsTop1002019 ScientificReportsTop1002018 ScientificReportsTop102018 ScientificReportsTop1002017 EditorialBoardHighlights AuthorHighlights Announcements 10thAnniversaryEditorialBoardInterviews ScientificReportsTop1002020 ScientificReportsTop1002021 Publishwithus Forauthors Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing



請為這篇文章評分?