A novel metamaterial-based antenna for on-chip ... - Nature
文章推薦指數: 80 %
In this paper, we present a novel antenna design based on metamaterial properties that operates in the millimeter wave regime. This design ... Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature scientificreports articles article Anovelmetamaterial-basedantennaforon-chipapplicationsforthe72.5–81 GHzfrequencyrange DownloadPDF DownloadPDF Subjects ElectricalandelectronicengineeringMaterialsfordevices AbstractInthispaperwepresentanovelmetamaterial-basedantennasimulatedusingHFSS.Theunitcellparameterswereextractedusingperiodicboundaryconditionsandwave-portexcitation.ThemetamaterialismagneticallycoupledtotheCPWline,theinducedcurrentinthehexagonalringgivesrisetoafieldperpendiculartotheincidentone.TheantennacanbemodeledbyanLCcircuit.Thisdesignachievesasignificantimpedancebandwidthof8.47 GHz(S11 = − 10 dBfrom72.56 GHzto81.03 GHz),andaminimumreturnlossof− 40.79 dBat76.89 GHz,whichclearlyindicatesgoodimpedancematchingto50Ω.Theproposedantennaoffersgainsfrom4.53to5.25dBi,withradiationefficienciesbetterthan74%.Compactness,simpledesignlayout,anoveldesign,andgoodradiationcharacteristicsforthisantennaarethemaincontributionsofthiswork.Theantennacanbebuiltontopofa300 µmthicksiliconwafer,forapplicationonHR-SOI-CMOStechnology.Whencomparedtootherantennadesignsforthesamefrequencyband,theproposedantennaachievesverygoodperformance.Thisdesignissuitableforthereceptionstageoflong-rangeautomobileradarsystems,duetoitswideHPBW,aswellasE-bandapplications,suchasbackhaulsystems. IntroductionTomeetthehugepublicdemandforcompact,wirelesssystems,antennas,besidetheothernecessaryelectroniccircuitry,mustbeintegratedonthesamesiliconchip,andthusresearchonon-chipantennas(AoC)hasbecomeaveryimportantfieldofendeavorinrecentyears1,2,3,4,5,6,7,8,justtomentionafew.On-chipantennasofferfullmonolithicintegrationofreceiversandtransmitters,withgreatrepeatability,sizereduction,lowpowerconsumption,andareductionofexternalinterconnections,suchasbondwiresorsolderballs9.Infact,AoChavebecomeaverydynamicfieldofendeavor,astheslewofrecentlypublishedreportsshows,spanningdifferenttechniquessuchascouplingandexcitationtechniques1,2,3,isolation4,circuitdesign5,andtheuseofmetamaterialandmetasurfaceproperties6,7,8.Ofthemanyapplicationsthathavebeenaddressedbydifferentresearchgroups,onethatfallsinthe76–81 GHzisvehicularradar10.Vehicularradarsystemsaredividedintotwomajorareas,thesignalprocessingandpowersupplyunit;andtheRFfront-end,whichcontainstheradartransceiverdeviceandoneormoreTXandRXantennas11.Infact,on-chipantennasaregoodcandidatesforthesesystems,mainlyduetotheircompactsize,lowpowerconsumptionandthepossibilitytofullyintegratetheRFfront-end.Itiswellknown,however,thatbulksiliconwithtypicalconductivitiesintherange1–10S/mforstandardCMOSprocessesleadstoverypoorantennaperformance,e.g.,typicalantennagainsof− 10dBi,duetosubstratelosses12.Overthepastfewyears,inordertoimprovethegain,directivity,andradiationefficiency,whileovercomingthelimitationsofsiliconsubstratesandmaintainingreducedsize,differenttypesofmetamaterialshavebeenproposed,suchasArtificialMagneticConductors,AMC;HighImpedanceSurfaces,HIS;ElectromagneticBand-Gapstructures,EBG;DoubleNegativeMaterials,DNG;ZerothOrderResonators,ZOR;andvarioustypesofmetasurfaces13,14,15,16,17,18,19,20.Inotherworks,externalresonators21,orlensesareused22,23,micromachiningisperformedaroundandbelowtheantenna24,thedopingprofilearoundtheantennaistailored12,itspositionisoptimized25,reflectorsareemployed26,andhighresistivity(HR)substratesareused27,28.Notwithstanding,themajorityofon-chipantennadevelopmentshavebeenmadeonSOI(Silicon-On-Insulator)substrateswithHRsilicon,butachievingantennagainsintherangeof− 3to3dBi.Suchlowgainvaluesareappropriateforshort-rangecommunications,uptoonemeter;typicalapplicationsarethehigh-dataratetransferandsynchronizationbetweensmartwirelessdevices(smart-phone,laptop,externalharddrives)usingawirelessUSB-likeconnection12.Inthispaper,wepresentanovelantennadesignbasedonmetamaterialpropertiesthatoperatesinthemillimeterwaveregime.Thisdesignresemblesthecenterofaflowerwithitspetals,andthuswerefertoitasa“FlowerMetamaterialAntenna”.Unlikeclassicandtraditionalantennas,thisoneisbasedonanewmetamaterialdesigntooperatefrom75to81 GHzonaHRsiliconwafer,anditisexcitedbyproximitywithacoplanarwaveguide(CPW),coveringthespectrumforlong-rangeautomotiveradars10,attaininghighergainstothoseobtainedwithSOItechnology,andachievinggoodradiationefficiency.Flower-metamaterialantennadesignThetopviewoftheproposedantennaisshowninFig. 1a,b.TheCPWlineusedtoexcitethemetamaterialisonahighermetallayeraboveathinlayerofsilicondioxide.Tomatchtheantenna’sinputimpedance,thewidthofthefeedline(Wt)iscalculatedat90 µm,andthegapbetweenthefeedandthegroundlineoneitherside(S)isfixedas45 µm.ThisCPWfeedishighlypreferredoveramicrostriplineinon-chipantennadesignsinceitexhibitslowerlosseswhentheselinesaredepositeddirectlyonhighresistivitysiliconsubstratesandarelesssensitivetobulkparametervariationssuchaschangesincarrierconcentration27.Figure1Topviewofproposedantenna(a)flower-metamaterialantennaandfeedline(CPW),(b)flower-metamaterialdesignand(c)cross-sectionalviewofproposedantenna.FullsizeimageThedesignparametersfortheproposedantennawereparametricallyoptimizedusingafull-wavesimulatortoobtainthedesiredresults,whicharelistedinTable1.Table1Designparameters.FullsizetableFigure 1cdepictsacrosssectionalviewoftheproposedstructure.A300 µmthickhighresistivitysiliconwafer(ρ ≥ 5kΩ cm,\(\tan\delta\)=0.05and\({\varepsilon}_{r}\)=11.8)wasusedasthesubstrate.Themetamaterialismadeofa2 µmthickcopper(Cu)layer.Inbetweenthesubstrateandtheradiatingstructure,thereisaninsulatinglayer,namelySiO2(\({\varepsilon}_{r}\)=3.9and\(\tan\delta\)=0.001)withathicknessof25 µm,andthefeedline(CPW)isplaced23 µmawayfromtheradiatingstructureinametallayerembeddedinaSiO2layer.Besides,a5 µmthickmetallayerisusedasareflectoronthebackside.TheFlower-Metamaterialstructurewaspreviouslydesignedwiththefull-wavesimulatorwithoutthefeedlinetoensureitbehavesasametamaterialstructure.Thedesignwasperformedfollowingthemethodologyproposedin29,andsomedetailsarepresentedin“Methods”section.Figure 2showstherealandimaginarypartsofthepermittivityandpermeabilityofthedesign,demonstratingitsmetamaterialbehavior(Left-Handedmaterial)inthefrequencybandofinterest,afteralengthysimulationprocess.Figure2Complexpermittivity(ε)andpermeability(μ)ofproposedflowergeometry.FullsizeimageMoreover,whentheunitcellissimulatedusingFloquetports,theflowermetamaterialpresentsaninterestingbehavior,whichisshowninFig. 3.From72to81 GHz,themodessupportedbytheflowerareTE00andTM00,andothermodes(m,n;differentfromzero)areattenuated(> 30 dB/mm).Theflowerunitcellchangesdepropagationdirection,curvesthedirectionofelectricandmagneticfields,andpartiallyeliminatesthemagneticfieldconcentrationonthesiliconwafer,confiningitmostlyonandabovetheflower.Figure3Electricalandmagneticfieldsfor(a)TE00mode,and(b)TM00mode.FullsizeimageTheoperationmechanismisasfollows:whentheCPWlineispositionedbelowthemetamaterialcell,themetamaterialcellismagneticallycoupledtotheCPWline.Themagneticfieldlines(oftheCPWline)thatpassthroughthehexagonalringinduceacurrentthatgivesrisetoanelectricfieldinadirectionperpendiculartotheincidentwave.Thismagneticcoupling,theinducedcurrent,andtheelectricandmagneticfieldsareshowninFig. 4.Figure4Operationmechanism:(a)magneticcoupling,(b)inducedcurrent,and(c)fieldsthroughoutthestructure.FullsizeimageThedesignoftheproposedunitcellisalengthyprocessandmanyvariablesplayanimportantrole.However,abriefdesignevolutionispresentedbelowwithonly5steps,comparingthreeimportantfiguresofmeritconsideredduringthedesignprocess.ResultsThissectiondemonstratesthattheproposeddesignhassignificantpotentialforon-chipradarsystems,especiallyforthereceptionstage,duetoitswideHPBW,highgain,smallsizeandeaseoffabrication.Inthecaseofthetransmitterstage,amoderatetohighgain(betterthan3dBi)andanarrowbeamarerequired,andsomeimprovementstothedesignwouldbenecessarytosatisfythem.Figure 5showsthesimulatedreturnlossoftheproposednovelflowermetamaterial-basedantennaandimpedancebandwidth(|S11|≤ − 10 dB)of8.47 GHz,from72.56 GHzto81.03 GHz,consideringareferenceimpedanceof50Ω.Theelectricalandmagneticplanes(H-planeφ = 0°andE-planeφ = 90°)radiationparameters(inmagnitude)arepresentedinFig. 6,whichprovethatthedesigncoverstheentirefrequencybanddestinedforlong-rangeradars(76–81 GHz)andpartiallytheE-band(71–86 GHz).Figure5Briefdesignevolutionoftheproposedflowermetamaterial-basedantenna,andcomparisonofthreeofthefiguresofmeritversusfrequency.FullsizeimageFigure6Electric(leftside)andmagnetic(rightside)fieldmagnitudeatthreefrequencypoints:72.5 GHz(lower),77 GHz(central),and81 GHz(higher).FullsizeimageThe2DradiationpatternsareshowninFig. 7forthreefrequencypoints(lower,central,andhigher),remainingalmostunchangedthroughoutthefrequencyrangefrom72.5to81 GHz,withonlyonebeamandmaintainingsymmetryacrossthebandwidth.Thefront-backratioiscloseto19 dB,butahigherF/Bratiocanbeobtainedbyincreasingthereflectorplanesize.Figure7Normalizedradiationpatternsatthreefrequencypoints:72.5 GHz(lower),77 GHz(central),and81 GHz(higher).FullsizeimageThecomparisonofco-polarizationandcross-polarization,withandwithoutflowermetamaterial,isshowninFig. 8.Thisdesignhascross-polarizationvalueslowerthan−30 dB,andco-polarizationgreaterthan4.5 dB,whichguaranteesthatthewavesarealmostpurelylinearlypolarizedtotheright,consideringthevaluesofaxialratio(AR → ∞)andRHCP-LHCPgains,obtainedfromthefullwavesimulator.Figure8Comparisonofcross-polarizationandco-polarizationversusfrequencyofthedesignwithandwithoutproposedflowermetamaterial.FullsizeimageFurthermore,thepeakgainsshowninFig. 5showthattheproposeddesignimprovesgainby32%at72.5 GHz,31.16%at73 GHz,27.94%at74 GHz,29%at75 GHz,23.51%at76 GHz,18.79%at77 GHz,14.61%at78 GHz,10.63%at79 GHz,6.8%at80 GHzand3.6%at81 GHz.Likewise,theradiationefficiencyisimprovedfrom72.5 GHzto78 GHz,andfrom79to81 GHzitdecreasesslightly,butremainsabove74%.Furthermore,thesecurvesshowthattheflowermaterialactsasanLCcircuit,duetotheconcentrationsofelectricandmagneticfieldsinthedesign.Anequivalentcircuitforthemetamaterial-basedantennawasderived,anditisshowninFig. 9a.Thelumpedelementsvaluesofthemodelare:\({L}_{L}=1.56pH,\;{C}_{L}=2.53pF,\;{L}_{1}={L}_{2}=10.1fF,\;{C}_{1}=20fF,\;{C}_{2}={C}_{3}=66pF,\;{C}_{4}=0.1fF,\;{C}_{cpw}=24.8fF,\;{L}_{cpw}/4=44.45pH\).Thecomparisonbetweenmodelandfull-wavesimulationsisshowninFig. 9b.Figure9(a)Proposedequivalentcircuit,and(b)comparisonofequivalentcircuitwithfull-wavesimulationresults.FullsizeimageItisnoteworthythatthisisanoriginaldesign,whichhasmanyadvantagesoverotherreportedantennasforthesamefrequencyrange13,14,21,22,30,31,whosecharacteristicsarelistedinTable2.Table2Comparisonwithrelatedworks.FullsizetableItisimportanttoconsiderthatthedesignsonceramicsubstratesattainahighergain,sincethesematerialshavelowerlossesthanasemiconductorsubstrate.Thesedesigns,however,occupyaverylargeareaandhaveanarrowerbandwidththanourdesign.Ontheotherhand21,haslowerefficiency,occupiesalargerareaandvolume,andisbasedonaquartzcrystal.Thedesignin13hasahigherbandwidthanddoesnotoccupyalargearea,butthegainandcouplingattheinputarelow.Theantennareportedby14isapproximately13timeslargerthantheonepresentedhere,andachievesagainofjust1.46timesthatoftheoneobtainedwiththeproposeddesign,inadditiontopresentinga1 GHzbandwidth.Finally,thehalfpowerbeamwidthinallthecasesislowerthantheoneobtainedinourdesign,whichmeansthatthosedesignshaveveryfinebeams,whichareappropriateforthetransmissionstage,butnotforRxantennas,whichrequirealargefieldofview32.Additionally,whentheproposeddesigniscomparedwithdesignsworkingatTHzrange4,8,thisdesignhaslowergain,sincebothdesigns4,8usepolyimideassubstrate;thereforeitistobeexpectedthatthegainswillbehigher,becausethesubstratehasalowerlosscoefficient.Comparedwith8theproposednoveldesignhashigherefficiency,andis36timessmaller,andcomparedwith4,ourdesignis270timessmaller,evenwhentheoperatingfrequencyofourdesignislower.DiscussionHereinwehavepresentedanovelflower-metamaterialantennadesignedtoworkfrom72.5to81 GHz.Thisantennadesign,onaHR-Siliconwafer,hasmediumtohighgain,acceptabledirectivity,goodradiationefficiency,widebandwidth,andcompactsize,whichisidealforon-chipautomobileradarapplications,particularlyforthereceptionstage,consideringitswideHPBW.Theradiationpatternshowsonlyonebeamfrom72.5to81 GHz.AhigherF/Bratiocanbeobtainedbyincreasingthereflectorplanesize,andthepolarizationisalmostpurelylinear,duetogoodvaluesofcross-polarizationandco-polarizationinalltherange.Thesuggestedfabricationprocessforprototypingoftheproposeddesignisasfollows:thegroundplane,flowermetamaterial,andfeedlinecanbeof1–2 μmofcopperoraluminum.Thethicklayerofsilicondioxidecanbeobtainedfromwetthermaloxidationprocess,butalsocanbereplacedwithothermaterial,suchaspolyamideorpolyimide,andsomedimensionsshouldbeadjustedtoensuretheimpedancebandwidthfrom72.5to81 GHz.Thenewproposedantennabasedontheso-called“flowermetamaterials”canbeintegratedintoaHR-SOI-CMOSprocess,inthelastlayeroftheBEOL,thatis,becauseaseparationbetweentheexcitationlineandmetamaterialof23μmisrequired,whenSiO2isusedbetweenbothmetallayers.MethodsAllthefull-wavesimulationswereperformedusingAnsyselectromagneticssuite2021/R1(HighFrequencyStructureSimulator,HFSS)(https://www.ansys.com/products/electronics/ansys-hfss).Forthedesignandextractionoftheparametersofthemetamaterialunitcell,theprocesspresentedinFig. 10wasfollowed.Isaniterativeprocess.AdditionalsimulationswereperformedwithFloquetportsandmaster–slaveconditionstocalculatethemodesthattheflowermetamaterialsupports,aswellasthefields,whicharepresentedinFig. 3.Figure10Methodologyfordesignandextractionofparametersofunitcellmetamaterial.FullsizeimageFortheradiationparametersAnsysisalsoused,withalumpedportfortheexcitationwithinputimpedanceof50Ωandradiationboxwithdimensionsbetterthan\({{\varvec{\lambda}}}_{0}\;(\text{at}\;80\;\text{GHz})\).Multiplesolutionfrequenciesareusedinthesimulationtoguaranteeaccuracyacrossthefrequencysweep.TheequivalentcircuitwasmodeledwithAdvancedDesignSystem(ADS).Theproposedequivalentcircuitisbasedontransmissionlinetheory.ThethreestageshowninFig. 9a(inblueboxes)representtheflowerdividedinthreeparts;\({{\varvec{C}}}_{4}\)representsthecapacitancebetweenthepetalsoftheflowershape;\({{\varvec{L}}}_{{\varvec{L}}}\)and\({{\varvec{C}}}_{{\varvec{L}}}\)aretheprincipalelementsofthisequivalentcircuit,bothrepresentstheelectromagneticfieldsatresonantfrequency;and\({{\varvec{L}}}_{{\varvec{c}}{\varvec{p}}{\varvec{w}}}/4\)and\({{\varvec{C}}}_{{\varvec{c}}{\varvec{p}}{\varvec{w}}}\)arethelumpedelementsoftheCPWline.Theterm\({{\varvec{L}}}_{{\varvec{c}}{\varvec{p}}{\varvec{w}}}/4\)representstheinductancewhentheflowerismagneticallycoupledtothetransmissionline.ConclusionsHereinwehavepresentedanovelflower-metamaterialantennaworkingfrom72.5to81 GHz.ThisantennadesignoverHR-Siliconwaferhasmedium–highgain(betterthan4.5dBi),goodradiationefficiency(higherthan74%),wideimpedancebandwidth(8.47 GHz),andcompactsize(1mm2).Moreover,herewepresentanequivalentcircuitofthenovelflowermetamaterial-basedantenna.TheproposeddesignissuitableforapplicationsofE-band,suchasbackhaulsystems,andautomobileradarsystems. ReferencesAlibakhshikenari,M.etal.High-gainon-chipantennadesignonsiliconlayerwithapertureexcitationforterahertzapplications.IEEEAntennasWirel.Propag.Lett.19,1576–1580.https://doi.org/10.1109/LAWP.2020.3010865(2020).ADS Article GoogleScholar Alibakhshikenari,M.,Virdee,B.S.,Althuwayb,A.A.,Mariyanayagam,D.F.&Limiti,E.Compactandlow-profileon-chipantennausingundersideelectromagneticcouplingmechanismforterahertzfront-endtransceivers.Electronics10,1–7.https://doi.org/10.3390/electronics10111264(2021).Article GoogleScholar Fan,Y.,Xie,S.,Luo,Y.&Ma,K.Gainandradiationefficiencyenhanceterahertzon-chipantennabasedon0.13-mmSiGeBiCMOS.InProceedingsofthe14thUK-Europe-ChinaWorkshoponMillimeter-WavesandTerahertzTechnologies(UCMMT).1–3,https://doi.org/10.1109/UCMMT53364.2021.9569947(2021).Alibakhshikenari,M.etal.High-isolationantennaarrayusingSIWandrealizedwithagraphenelayerforsub-terahertzwirelessapplications.Sci.Rep.11,1–14.https://doi.org/10.1038/s41598-021-87712-y(2021).CAS Article GoogleScholar Mustacchio,C.,Boccia,L.,Arnieri,E.&Amendola,G.Againlevelingtechniqueforon-chipantennasbasedonsplit-ringresonators.IEEEAccess.9,90750–90756.https://doi.org/10.1109/ACCESS.2021.3091777(2021).Article GoogleScholar Alibakhshikenari,M.etal.Studyofon-chipantennadesignbasedonmetamaterial-inspiredandsubstrate-integratedwaveguidepropertiesformillimeter-waveandTHzintegrated-circuitapplications.J.InfraredMillim.TerahertzWaves.42,17–28.https://doi.org/10.1007/s10762-020-00753-8(2020).CAS Article GoogleScholar Althuwayb,A.A.etal.Antennaon-chip(AoC)designusingmetasurfaceandSIWtechnologiesforTHzwirelessapplications.Electronics10,1–8.https://doi.org/10.3390/electronics10091120(2021).Article GoogleScholar Alibakhshikenari,M.etal.High-gainmetasurfaceinpolyimideon-chipantennabasedonCRLH-TLforsub-terahertzintegratedcircuits.Sci.Rep.10,1–9(2020).Article GoogleScholar Chen,Z.N.,Liu,D.,Nakano,H.,Qing,X.&Zwick,T.HandbookofAntennaTechnologies2445–2498(SpringerSingapore,2016).Book GoogleScholar FederalCommunicationsCommission.Radarservicesinthe76–81GHzbandReportandOrder–ETDocket.FCC-CIRC1707-07.15–26,https://docs.fcc.gov/public/attachments/DOC-345476A1.pdf.(2017).Rao,S.MIMOradar.TexasInstrumentsApplicationReportSWRA554A.https://www.ti.com/lit/an/swra554a/swra554a.pdf?ts=1620165925990&ref_url=https%253A%252F%252Fwww.google.com%252(2018).Dussopt,L.Integratedantennasandantennaarraysformillimetre-wavehighdata-ratecommunications.InProceedingsofthe2011LoughboroughAntennas&PropagationConference.1–5,https://doi.org/10.1109/LAPC.2011.6114000(2011).Mustacchio,C.,Boccia,L.,Arnieri,E.&Amendola,G.Gainenhancementtechniqueforon-chipmonopoleantenna.InProceedingsofthe50thEuropeanMicrowaveConference(EuMC).650–653,https://doi.org/10.23919/EuMC48046.2021.9338160(2021).Li,Q.,Li,W.,Ren,B.,Zhang,L.&Zhang,B.Asilicon-basedon-chipantennaoperatingat77GHz.In2019Photonics&ElectromagneticsResearchSymposium-Fall(PIERS-Fall).2848–2852,https://doi.org/10.1109/PIERS-Fall48861.2019.9021682(2019)Dong,Y.&Itoh,T.Metmaterial-basedantennas.Proc.IEEE100,2271–2285(2012).CAS Article GoogleScholar Manh,C.T.,Ouslimani,H.H.,Guida,G.,Priou,A.,Teillet,H.&Daden,J.Y.Metamaterialstructuresforcompactmillimeterwaveantennaapplications.InProceedingsofProgressinElectromagneticsResearchSymposium.1306–1312(2008).Wasel,H.&Guoping,Z.Enhancing5GpatcharrayantennagainusingDNGmetamaterial.Int.J.EnergyEng.8,93–96.https://doi.org/10.5923/j.ijee.20180804.02(2018).Article GoogleScholar Devapriya,A.T.&Robinson,S.Investigationonmetamaterialantennaforterahertzapplications.J.Microwav.Optoelectron.Electromagn.Appl.18,377–389.https://doi.org/10.1590/2179-10742019v18i31577(2019).Article GoogleScholar Badawe,M.E.,Almoneef,T.S.&Ramahi,O.M.Atruemetasurfaceantena.Sci.Rep.6,1–8.https://doi.org/10.1038/srep19268(2016).CAS Article GoogleScholar Sajin,G.I.&Mocanu,I.A.“MetamaterialCRLHantennasonsiliconsubstrateformillimeter-waveintegratedcircuits.Int.J.AntennasPropag.1–9,2012.https://doi.org/10.1155/2012/593498(2012).Article GoogleScholar Hasch,J.,Wostradowski,U.,Gaier,S.&Hansen,T.77GHzradartransceiverwithdualintegratedantennaelements.InGermanMicrowaveConferenceDigestofPapers.280–283,https://ieeexplore.ieee.org/document/5498268(2010).Nagaishi,H.,Kuriyama,A.,Kuroda,H.&Kitayama,A.HornandprismantennafordualrangeanddualFOVautomotiveradarusing77-GHzband.InProceedingsofthe18thInternationalSymposiumonAntennaTechnologyandAppliedElectromagnetics(ANTEM).1–2,https://doi.org/10.1109/ANTEM.2018.8572918(2018).Cheema,H.M.&Shamim,A.Thelastbarrier:On-chipantennas.IEEEMicrow.Mag.14,79–91.https://doi.org/10.1109/MMM.2012.2226542(2013).Article GoogleScholar InfineonTechnologiesAG.,Meyer,T.,Hartner,W.&Wojnowski,M.On-chipantennasforsemiconductordevicesandrelatedmanufacturingmethods.UnitedStatesPatentNo.US2019/0221531A1.https://patents.google.com/patent/US20190221531A1/en(2019).Ng,H.J.,Wang,R.&Kissinger,D.On-chipantennasinSiGeBiCMOStechnology:challenges,stateoftheartandfuturedirections.InProceedingsofthe2018Asia-PacificMicrowaveConference(APMC).621–623,https://doi.org/10.23919/APMC.2018.8617626(2018).Hedayati,M.K.etal.Challengesinon-chipantennadesignandintegrationwithRFreceiverfront-endcircuitryinnanoscaleCMOSfor5Gcommunicationsystems.IEEEAccess.7,43190–43204.https://doi.org/10.1109/ACCESS.2019.2905861(2019).Article GoogleScholar Lederer,D.&Raskin,J.P.SubstratelossmechanismsformicrostripandCPWtransmissionlinesonlossysiliconwafers.InProceedingsofthe2002IEEEMTT-SInternationalMicrowaveSymposium,Seattle.685–688,https://doi.org/10.1109/MWSYM.2002.1011714(2002).Singh,K.,Nirmal,A.V.&Sharma,S.V.Studythelossofmicrostriponsilicon.MicrowavesandRF.https://www.mwrf.com/technologies/components/article/21848246/study-the-loss-of-microstrip-on-silicon(2017).Numan,A.B.&Sharawi,M.S.Extractionofmaterialparametersformetamaterialsusingafull-wavesimulator[educationcolumna].IEEEAntennasPropag.Mag.55(5),202–211.https://doi.org/10.1109/MAP.2013.6735515(2013).ADS Article GoogleScholar Dong,J.&Zhang,L.Reconfigurableantennaforautomotiveradarsystem.InProceedingsofthe2019IEEEInternationalSymposiumonAntennasandPropagationandUSNC-URSIRadioScienceMeeting.1155–1156,https://doi.org/10.1109/APUSNCURSINRSM.2019.8888847(2019).Xie,J.,Wu,Q.,Yu,C.,Wang,H.&Hong,W.WidebandSIWcavity-backedslotarrayantennawithflatgaincharacteristicsfor79GHzautomotiveradar.InProceedingsofthe13thEuropeanConferenceonAntennasandPropagation(EuCAP).1–4https://ieeexplore.ieee.org/document/8739815(2019).Sickinger,F.,Weissbrodt,E.&Vossiek,M.76–81GHzLTCCantennaforanautomotiveminiatureradarfrontend.Int.J.Microw.Wirel.Technol.10,729–736.https://doi.org/10.1017/S1759078718000855(2018).Article GoogleScholar DownloadreferencesAcknowledgementsTheauthorswouldliketoexpresstheirgratitudetowardsMexicanNationalCouncilforScienceandTechnology(CONACyT)bythefinancialsupportunderGrant852217andGrant285199.FundingThisworkwassupportedinpartbytheMexicanNationalCouncilforScienceandTechnology(CONACyT)underGrant285199andGrant852217.AuthorinformationAuthorsandAffiliationsElectronicsDepartment,InstitutoNacionaldeAstrofísica,ÓpticayElectrónica(INAOE),72840,Puebla,MexicoKarenN.Olan-Nuñez & RobertoS.Murphy-ArteagaAuthorsKarenN.Olan-NuñezViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarRobertoS.Murphy-ArteagaViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsK.N.conceivedtheidea,designedthestructure,andwrotetheprincipalideas.R.Mrevisedthemanuscript,contributedsomeideas,andsupervisedthework.CorrespondingauthorCorrespondenceto RobertoS.Murphy-Arteaga.Ethicsdeclarations Competinginterests Theauthorsdeclarenocompetinginterests. AdditionalinformationPublisher'snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.Rightsandpermissions OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicence,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicence,visithttp://creativecommons.org/licenses/by/4.0/. ReprintsandPermissionsAboutthisarticleCitethisarticleOlan-Nuñez,K.N.,Murphy-Arteaga,R.S.Anovelmetamaterial-basedantennaforon-chipapplicationsforthe72.5–81 GHzfrequencyrange. SciRep12,1699(2022).https://doi.org/10.1038/s41598-022-05829-0DownloadcitationReceived:08September2021Accepted:12January2022Published:01February2022DOI:https://doi.org/10.1038/s41598-022-05829-0SharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative CommentsBysubmittingacommentyouagreetoabidebyourTermsandCommunityGuidelines.Ifyoufindsomethingabusiveorthatdoesnotcomplywithourtermsorguidelinespleaseflagitasinappropriate. DownloadPDF Advertisement Explorecontent Researcharticles News&Comment Collections Subjects FollowusonFacebook FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal AboutScientificReports Journalpolicies Guidetoreferees Contact CallsforPapers Editor'sChoice GuestEditedCollections ScientificReportsTop1002019 ScientificReportsTop1002018 ScientificReportsTop102018 ScientificReportsTop1002017 EditorialBoardHighlights AuthorHighlights Announcements 10thAnniversaryEditorialBoardInterviews ScientificReportsTop1002020 ScientificReportsTop1002021 Publishwithus Forauthors Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing
延伸文章資訊
- 1A novel metamaterial-based antenna for on-chip ... - Nature
In this paper, we present a novel antenna design based on metamaterial properties that operates i...
- 2(PDF) Design and Analysis of Metamaterial Antenna Using ...
In this paper, a metamaterial antenna consisting of Triangular resonator (TR) and a thin wire (TW...
- 3Electromagnetic Metamaterials: A New Paradigm of Antenna ...
Over the last decade, numerous techniques are proposed to improve the performance of the antenna....
- 4Design of Metamaterial Antenna for 2.4 GHz WiFi Applications
In this paper metamaterial antenna is presented. “Meta” a Greek word defines “beyond” the materia...
- 5Metamaterials, mmWave antennas, 3D radar and ...
Metamaterials are engineered/manmade materials with properties not found in nature. Antenna desig...