Qubit teleportation between non-neighbouring nodes ... - Nature
文章推薦指數: 80 %
Future quantum internet applications will derive their power from the ability to share quantum information across the network. Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature articles article Qubitteleportationbetweennon-neighbouringnodesinaquantumnetwork DownloadPDF DownloadPDF Subjects QuantuminformationQuantumoptics AbstractFuturequantuminternetapplicationswillderivetheirpowerfromtheabilitytosharequantuminformationacrossthenetwork1,2.Quantumteleportationallowsforthereliabletransferofquantuminformationbetweendistantnodes,eveninthepresenceofhighlylossynetworkconnections3.Althoughmanyexperimentaldemonstrationshavebeenperformedondifferentquantumnetworkplatforms4,5,6,7,8,9,10,movingbeyonddirectlyconnectednodeshas,sofar,beenhinderedbythedemandingrequirementsonthepre-sharedremoteentanglement,jointqubitreadoutandcoherencetimes.Herewerealizequantumteleportationbetweenremote,non-neighbouringnodesinaquantumnetwork.Thenetworkusesthreeopticallyconnectednodesbasedonsolid-statespinqubits.Theteleporterispreparedbyestablishingremoteentanglementonthetwolinks,followedbyentanglementswappingonthemiddlenodeandstorageinamemoryqubit.Wedemonstratethat,oncesuccessfulpreparationoftheteleporterisheralded,arbitraryqubitstatescanbeteleportedwithfidelityabovetheclassicalbound,evenwithunitefficiency.Theseresultsareenabledbykeyinnovationsinthequbitreadoutprocedure,activememoryqubitprotectionduringentanglementgenerationandtailoredheraldingthatreducesremoteentanglementinfidelities.Ourworkdemonstratesaprimebuildingblockforfuturequantumnetworksandopensthedoortoexploringteleportation-basedmulti-nodeprotocolsandapplications2,11,12,13. MainQuantumteleportationisthecentralroutineforreliablysendingqubitsacrosslossynetworklinks3,aswellasakeyprimitiveofquantumnetworkprotocolsandapplications2,11,12.Usingateleporterintheformofapre-sharedentangledstate,thequantuminformationistransferredbyperformingajointBell-statemeasurement(BSM)onthesender’spartoftheentangledstateandthequbitstatetobeteleported.ThestateisrecoveredonthereceivingnodebyagateoperationconditionedontheBSMoutcome3.Becausethequantuminformationisnottransmittedbyaphysicalcarrier,theprotocolisinsensitivetolossintheconnectingphotonicchannelsandonintermediatenodes.AdeterministicBSMcombinedwithreal-timefeed-forwardenablesunconditionalteleportation,inwhichstatetransferisachievedeachtimeaqubitstateisinsertedintotheteleporter.Pioneeringexplorationsofquantumteleportationprotocolswereperformedusingphotonicstates4,5,6.Followingthedevelopmentofquantumnetworknodeswithstationaryqubits,remotequbitteleportationwasrealizedbetweentrappedions7,trappedatoms8,10,diamondnitrogen-vacancy(NV)centres9andmemorynodesbasedon atomicensembles14.Althoughfuturequantumnetworkapplicationswillwidelyuseteleportationbetweennon-connectednodesinthenetwork,thedemandingsetofrequirementsonthepre-sharedentanglement,theBSMandthecoherencetimesforenablingreal-timefeed-forwardhas,sofar,preventedtherealizationofteleportationbeyonddirectlyconnectedstationarynetworknodes.Hereweovercomethesechallengesbyasetofkeyinnovationsandachievequbitteleportationbetweennon-neighbouringnetworknodes(seeFig.1a).Ourquantumnetworkconsistsofthreenodesinalineconfiguration,Alice,BobandCharlie.EachnodecontainsaNVcentreindiamond.UsingtheNVelectronicspinasthecommunicationqubit,weareabletogenerateremoteentanglementbetweeneachpairofneighbouringnodes.Inaddition,BobandCharlieeachuseanearby13Cnuclearspinasamemoryqubit.ThestepsoftheteleportationprotocolareshowninFig.1b.Topreparetheteleporter,weuseanentanglementswappingprotocolmediatedbyBob,similartoaquantumrepeaterprotocol15,toestablishentanglementbetweenAliceandCharlie.Oncesuccessfulpreparationoftheteleporterisheralded,theinputqubitstateispreparedonCharlieandfinallyteleportedtoAlice.Fig.1:Teleportingaqubitbetweennon-neighbouringnodesofaquantumnetwork.a,Threenetworknodes,Alice(A),Bob(B)andCharlie(C),areconnectedbymeansofopticalfibrelinks(lines)inalineconfiguration.Eachsetuphasacommunicationqubit(purple)thatenablesentanglementgenerationwithitsneighbouringnode.Furthermore,BobandCharliecontainamemoryqubit(yellow).b,Thestepsoftheteleportationprotocol.(1)WepreparetheteleporterbyestablishingentanglementbetweenAliceandCharlieusinganentanglementswappingprotocolonBob,followedbyswappingthestateatCharlietothememoryqubit.(2)ThequbitstatetobeteleportedispreparedonthecommunicationqubitonCharlie.(3)ABSMisperformedonCharlie’squbitsandtheoutcomeiscommunicatedtoAliceoveraclassicalchannel.Dependentonthisoutcome,Aliceappliesaquantumgatetoobtaintheteleportedqubitstate.FullsizeimageEntanglementfidelityofthenetworklinksAkeyparameterforquantumteleportationisthefidelityofthepre-sharedentangledstatebetweenAliceandCharlie.Aswegeneratethisstatebyentanglementswapping,itsfidelitycanbeincreasedbymitigatingerrorsontheindividuallinks.Ournetworkgeneratesentanglementbetweenneighbouringnodesusingasingle-photonprotocol16,17inanoptical-phase-stabilizedarchitecture18.Thebuildingblockofthisprotocolisaqubit–photonentangledstatecreatedateachnode.Togeneratethisentangledstate,weinitializethecommunicationqubitinasuperpositionstate\(|\psi\rangle=\sqrt{\alpha}|0\rangle+\sqrt{1-\alpha}|1\rangle\)andapplyastate-selectiveopticalpulsethattransfersthepopulationfrom\(|0\rangle\)toanopticallyexcitedstate.Followingspontaneousemission,thequbitstateisentangledwiththephotonnumber(0or1photon).Weperformthisprotocolonbothnodesandinterferetheresonantphotonicstatesonabeamsplitter(Fig.2a).Detectionofasinglephotoninoneoftheoutputportsideallyheraldsthegenerationofanentangledstate\(|\psi\rangle=(|01\rangle\pm|10\rangle)/\sqrt{2},\)inwhichthe±phaseissetbythedetectorthatclicked.Figure2bshowsthejointoutcomesofqubitmeasurementsinthecomputationalbasisafterentanglementisheralded,showingtheexpectedcorrelations.Fig.2:High-fidelityentanglednetworklinks.a,Simplifiedschematicoftheopticallinkusedforgeneratingentanglementbetweenneighbouringnodes.Photonsemittedbythecommunicationqubitsarefilteredbyadichroicmirror(DM)toseparatetheresonant(zero-phononline,ZPL)photons(3%ofemission)fromtheoff-resonant(phonon-sideband,PSB)photons(97%ofemission).Theresonantphotonsaresenttothebeamsplitter(BS);detectionofasinglephotonatoneoftheZPLdetectorsheraldssuccessfulgenerationofanentangledstatebetweenthetwonodes.b,Measuredcorrelationsofthecommunicationqubitsinthecomputationalbasis,conditionedonaheraldingeventontheZPLdetectors.c,Left,histogramsofthePSBphotondetectiontimesonAlice(top)orBob(bottom),conditionedonasimultaneousZPLdetectioninthesameentanglementgenerationattempt.Greylinesshowexpectedcorrelationsonthebasisofaquantum-opticalmodel(see SupplementaryInformation).ThecorrelationsmeasuredintheothermeasurementbasescanbefoundinExtendedDataFig.1.d,Measuredfidelityofthenetworklinks,withoutPSBrejection(left),withPSBrejection(middle)andwithPSBrejectionplusshorteneddetectionwindow(right).ThedarkbluebarsindicatethecorrespondingexpectedfidelityonAlice–Charlieafterentanglementswappingforeachcase(seeMethods).Allerrorbarsrepresentonestandarddeviation.FullsizeimageTheinfidelityofthegeneratedstatehasthreemaincontributions:double\(|0\rangle\)stateoccupancy,doubleopticalexcitationandfinitedistinguishabilityofthephotons18,19.Inthecaseofdouble\(|0\rangle\)stateoccupancy(whichoccurswithprobabilityα),bothcommunicationqubitsareinthe\(|0\rangle\)stateandhaveemittedaphoton.Detectionofoneofthesephotonsleadstofalseheraldingofanentangledstate.Thesecondeffect,doubleexcitation,isdue tothefinitelengthoftheopticalpulsecomparedwiththeopticallifetimeoftheemitter.Thereisafinitechancethatthecommunicationqubitemitsaphotonduringthispulse,issubsequentlyre-excitedandthenemitsanotherphoton,resultinginthequbitstatebeingentangledwithtwophotons.Detectionorlossofthefirstphotondestroysthecoherenceofthequbit–photonentangledstateanddetectionofthesecondphotoncanthenfalselyheraldthegenerationofanentangledstate.Crucially,falseheraldingeventscausedby double\(|0\rangle\)stateoccupancyanddoubleexcitationarebothaccompaniedbyanextraemittedphoton.Therefore,detectionofthisextraphotonallowsforunambiguousidentificationofsucheventsandthusforreal-timerejectionoffalseheraldingsignals.Weimplementthisrejectionschemebymonitoringtheoff-resonantphonon-sideband(PSB)detectionpathonbothsetupsduringandaftertheopticalexcitation(seeFig.2a).Toinvestigatetheeffectofthisscheme,wegenerateentanglementontheindividuallinksandextracttheentanglementheraldingeventsforwhichthePSBmonitoringflaggedthepresenceofanextraphoton.Fortheseevents,weanalysethecorrespondingqubitmeasurementsinthecomputationalbasis(Fig.2c).Weidentifytwoseparateregimes:oneduringtheopticalpulse(purple)andoneaftertheopticalpulse(yellow).WhenaphotonisdetectedonAlice’s(Bob’s)PSBdetectorduringtheopticalpulse,weseethattheoutcome01(10)ismostprobable(purpledatainFig.2c),showingthatonlyonesetupwasinthe\(|0\rangle\)stateandthusthatbothdetectedphotonsoriginatedfromAlice(Bob).ThedetectionofPSBphotonsduringtheopticalpulsethusprimarilyflagsdoubleexcitationerrors.Bycontrast,whenaphotonisdetectedaftertheopticalpulseineitherAlice’sorBob’sPSBdetector,theoutcome00ismostprobable(yellowdatainFig.2c),indicatingthatbothsetupswereinthe\(|0\rangle\)stateandemittedaphoton.PSBphotondetectionaftertheopticalpulsethusflagsthedouble\(|0\rangle\)stateoccupancyerror.WefindsimilarresultstoFig.2cfortheentangledstatesgeneratedontheBob–Charlielink;seeExtendedDataFig.2.Theimprovementinfidelityfromrejectingthesefalseheraldingeventsinourexperimentissetbythecombinedprobabilityofoccurrence(≈9%;see SupplementaryInformation)multipliedbytheprobabilitytoflagthem(givenherebythetotalPSBphotondetectionefficiencyof≈10%).Thethirdmainsourceofinfidelity,thefinitedistinguishability,canarisefromfrequencydetuningsbetweentheemittedphotons20.Whereasmostofthesedetuningsareeliminatedupfrontbythecharge-resonance(CR)checkbeforethestartoftheprotocol(see SupplementaryInformation),thecommunicationqubitsmaystillbesubjecttoasmallamountofspectraldiffusion.Inoursingle-photonprotocol,thisleadstodephasingthatisstrongerforphotonsthataredetectedlaterrelativetotheopticalpulse.Byshorteningourdetectionwindow,wecanincreasethefidelityoftheentangledstateattheexpenseofalowerentanglingrate.Fortheexperimentsbelow(unlessmentionedotherwise),weuseadetectionwindowlengthof15 ns.Figure2dsummarizesthemeasuredimprovementsontheindividuallinksandtheestimatedeffectontheAlice–Charlieentangledstatefidelity.Theincreaseof≈3%isinstrumentalinpushingtheteleportationfidelityabovetheclassicalbound.MemoryqubitcoherenceInthepreparationoftheteleporter,wereliablypreservetheAlice–Bobentangledlinkonthememoryqubit,byabortingthesequenceandstartingoverwhentheBob–Charlieentangledstateisnotheraldedwithinafixednumberofattempts,thetimeout.The13Cmemoryqubitscanbecontrolledwithhighfidelitybymeansofthecommunicationqubit,althoughtheycanbeefficientlydecoupledwhennointeractionisdesired.Recentworkshowedthat,inamagneticfieldof189 mT,entanglementgenerationattemptswiththecommunicationqubitdonotlimitthememorydephasingtime\({T}_{2}^{\ast}\)(ref. 18),openingthedoortosubstantially extendingthememorypreservationtimewithactivecoherenceprotectionfromthespinbath21.Werealizethisprotectionbyintegratingadecouplingπ-pulseonthememoryqubitintotheexperimentalsequencethatfollowsaheraldingevent,whileensuringthatallphasesthatarepickedupowingtotheprobabilisticnatureoftheremoteentanglingprocessarecompensatedinrealtime(Fig.3a).Fig.3:Memoryqubitcoherenceandreadout.a,GatesequenceonBobforentanglementgenerationwiththecommunicationqubitwhilepreservingstatesstoredonthememoryqubit.Entanglementgenerationattemptsarerepeateduntilsuccessorapredeterminedtimeout.Onsuccessinthenthattempt,aphasefeed-forwardisappliedtomaintainthecorrectreferenceframeofthememoryqubit18,followedbyadecouplingpulseonthememoryqubit.ThedecouplingπMpulsecausesaZrotationonthecommunicationqubit.Afterwards,werephasethememoryqubitforthesameamountoftimeasittooktoheraldentanglement(byapplyingqblocksofXY8decouplingsequencesonthecommunicationqubit,inwhichqdependsonthenumberofentanglementattemptsneededn)andweendwithanotherphasefeed-forwardonthememoryqubit,tocompensateforanyphasepickedupduringthisdecoupling.b,Blochvectorlengthofasuperpositionstatestoredonthememoryqubitfordifferentnumberofentanglementattemptsoratime-equivalentwaitelement.Inthecaseofnodecoupling(noπM)onthememoryqubit,thegatesintheyellowshadedboxinaareleftout.Thegreydashedlineindicatesthechosentimeoutof1,000entanglementattempts.c,Gatesequenceforthebasis-alternatingrepetitivereadoutofthememoryqubit.d,Readoutfidelityforeachreadoutrepetition,forstates\(|0\rangle\)and\(|1\rangle\)e,Readoutfidelityofthebasis-alternatingrepetitivereadoutschemefordifferentnumberofreadoutrepetitions.f,Fractionofinconsistentreadoutpatternsfordifferentnumberofreadoutrepetitions.Ind–f,thedashedlinesshowanumericalmodelusingmeasuredparameters.Allerrorbarsrepresentonestandarddeviation.FullsizeimageInFig.3b,wechecktheperformanceofthissequencebystoringasuperpositionstateonthememoryqubitandmeasuringtheBlochvectorlength.Weobservethat,withoutthedecouplingpulse,thedecayoftheBlochvectorlengthisnotalteredbytheentanglementattempts,inlinewithpreviousfindings18.Bycontrast,whenweapplythedecouplingpulse,thedecayissloweddownbymorethanafactorof6,yieldingaN1/edecayconstantof≈5,300entanglementattempts,thehighestnumberreportedsofarfordiamonddevices.Thedifferenceintheshapeofthedecayindicatesthatintrinsicdecoherenceisnolongertheonlylimitingfactor.Theimprovedmemorycoherenceenablesustouseatimeoutof1,000entanglingattempts,morethandoublethatofref. 18,whichdoublestheentanglementswappingrate.MemoryqubitreadoutHigh-fidelitymemoryqubitreadoutisrequiredbothinthepreparationoftheteleporter(atBob)andduringtheteleportationprotocolitself(atCharlie).Thememoryqubitisreadoutbymappingitsstateontothecommunicationqubitusingquantumlogicfollowedbysingle-shotreadoutofthecommunicationqubitusingstate-dependentopticalexcitationanddetection22.Owingtolimitedphotoncollectionefficiency(≈10%)andfinitecyclicityoftheopticaltransition(≈99%),thecommunicationqubitreadoutfidelityisdifferentfor\(|0\rangle\)and\(|1\rangle\)andtheprobabilitythatthecorrectstatewasassignedismuchlargerifoneormorephotonsweredetected(assignedoutcome0)thanifnophotonsweredetected(assignedoutcome1)23.Inpreviouswork,wecircumventedthisissuebyconditioningonobtainingtheoutcome0(ref. 18).However,thisapproachscalesunfavourably,asitforcestheprotocoltoprematurelyabortwithprobability>50%ateachmemoryqubitreadout.Weresolvethischallengebyintroducingabasis-alternatingrepetitivereadoutforthememoryqubit(seeFig.3c).Thekeypointofthisreadoutstrategyis,incontrasttoearlierwork24,toalternatinglymapthecomputationalbasisstatesofthememoryqubittothecommunicationqubitstate\(|0\rangle\)Figure3dshowsthereadoutfidelitiesofthenthreadoutrepetitionforthetwoinitialstatesforthememoryqubitonBob(forCharlie,seeExtendedDataFig.3).Weclearlyobservetheexpectedalternatingpatternowingtotheasymmetryofthecommunicationqubitreadoutfidelities.Notably,thereadoutfidelitydecaysonlyby≈1%perreadout,showingthatthereadoutismostlynon-demolitionandseveralreadoutsarepossiblewithoutlosingthestate.Next,weassignthestateusingthefirstreadoutandcontinuethesequenceonlywhentheconsecutivereadoutsareconsistentwiththefirstreadout.Thesubsequentreadoutsthereforeaddconfidencetotheassignmentinthecaseofconsistentoutcomes,whereascasesofinconsistentoutcomes(whichhaveahigherchanceofindicatinganincorrectassignment)arefilteredout.InFig.3e,weplotthereadoutfidelityresultingfromthisstrategyforuptofivereadouts,withthecorrespondingrejectedfractiondue toinconsistentoutcomesplottedinFig.3f.Weobservethatusingtworeadoutsalreadyeliminatesmostoftheasymmetry,reducingtheaverageinfidelityfrom≈6%tobelow1%.Atthispoint,theremainingobservedinfidelitymainlyresultsfromcasesinwhichthememoryqubitwasflippedduringthefirstreadoutblockbecauseof imperfectmemoryqubitgates.Fortheexperimentsreportedbelow(unlessmentionedotherwise),weusetworeadoutrepetitionstobenefitfromahighaveragereadoutfidelity(Bob:99.2(4)%,Charlie:98.1(4)%)andahighprobabilitytocontinuethesequence(BobandCharlie:≈88%).TeleportingqubitstatesfromCharlietoAliceWithallinnovationsdescribedaboveimplemented,weperformtheprotocolasshowninFig.4a.First,wegenerateentanglementbetweenAliceandBobandstoreBob’spartoftheentangledstateonthememoryqubitusingacompiledSWAPoperation.Second,wegenerateentanglementbetweenBobandCharlie,whilepreservingthefirstentangledstateonthememoryqubitwiththepulsesequenceasdescribedinFig.3a.Next,weperformaBSMonBobfollowedbyaCRcheck.Wecontinuethesequenceifthecommunicationqubitreadoutyieldsoutcome0,thememoryqubitreadoutgivesaconsistentoutcomepatternandtheCRcheckispassed.AtCharlie,weperformaquantumgatethatdependsontheoutcomeoftheBSMandonwhichdetectorsclickedduringthetwo-nodeentanglementgeneration.Next,weswaptheentangledstatetothememoryqubit.Atthispoint,theteleporterisreadyandAliceandCharlieshareanentangledstatewithanestimatedfidelityof0.61.Fig.4:Qubitteleportationbetweennon-neighbouringnetworknodes.a,CircuitdiagramoftheteleportationprotocolusingnotationdefinedinFig.3.m(n)isthenumberofattemptsneededtoheraldentanglementfortheAB(BC)entangledlink.Seethe SupplementaryInformationforthefullcircuitdiagram.b,Teleportedstatefidelitiesforthesixcardinalstatesandtheiraverage(Avg.).Thegreylinesshowtheexpectedfidelitiesfromsimulations.Thedashedlinesinb–drepresenttheclassicalboundof2/3.c,AverageteleportedstatefidelityforthedifferentoutcomesoftheBSMonCharlie.Theright-mostbarshowstheresultingfidelitywhennofeed-forwardoperationonAlicewouldbeapplied.ThenumericalvaluesofthebarplotsshowninbandccanbefoundinExtendedDataTables1and2.d,Averagestatefidelityforaconditionalandanunconditionalteleportation,fordifferentdetectionwindowlengthsofthetwo-nodeentanglementgenerationprocesses.Theblue-bordereddatapointisthesamepointasshowninb.Allerrorbarsrepresentonestandarddeviation.FullsizeimageSubsequently,wegeneratethequbitstatetobeteleported,\(|\psi\rangle,\)onCharlie’scommunicationqubitandruntheteleportationprotocol.First,aBSMisperformedonthecommunicationandmemoryqubitsatCharlie.Withtheexceptionofunconditionalteleportation(discussedbelow),weonlycontinuethesequencewhenweobtaina0outcomeonthecommunicationqubit,whenwehaveaconsistentreadoutpatternonthememoryqubitandwhenCharliepassestheCRcheck.TheoutcomesoftheBSMaresenttoAliceand,byapplyingthecorrespondinggateoperation,weobtain\(|\psi\rangle\)onAlice’sside.Weteleportthesixcardinalstates\((\pm{\rm{X}},\pm{\rm{Y}},\pm{\rm{Z}}),\)whichformanunbiasedset25,andmeasurethefidelityoftheteleportedstatestotheideallypreparedstate(Fig.4b).WefindanaverageteleportedstatefidelityofF = 0.702(11)atanexperimentalrateof1/(117 s).Thisvalueexceedstheclassicalboundof2/3bymorethanthreestandarddeviations,therebyprovingthequantumnatureoftheprotocol.Wenotethatthisvalueprovidesalowerboundtothetrueteleportationfidelity,asthemeasuredfidelityisdecreasedbyerrorsinthepreparationofthequbitstatesatCharlie(estimatedtobe0.5%;see SupplementaryInformation).Thedifferencesinfidelitybetweentheteleportedstatesarisefromaninterplayoferrorsindifferentpartsoftheprotocolthateitheraffectallthreeaxes(depolarizingerrors)oraffectonlytwoaxes(dephasingerrors).Thesedifferencesarequalitativelyreproducedbyourmodel(greybarsinFig.4b).InFig.4c,weplottheteleportationfidelityforeachpossibleoutcomeoftheBSM.Owingtothebasis-alternatingrepetitivereadout,thedependenceonthesecondbit(fromthememoryqubitreadout)issmall,whereasforthefirstbit(communicationqubitreadout),thebestteleportedstatefidelityisachievedforoutcome0,due totheasymmetricreadoutfidelities.Wealsoanalysethecaseinwhichnofeed-forwardisappliedatAlice(see Methods);asexpected,theaveragestatefidelityreducestoavalueconsistentwithafullymixedstate(fidelityF = 0.501(7)),emphasizingthecriticalroleofthefeed-forwardintheteleportationprotocol.Finally,wedemonstratethatthenetworkcanachieveunconditionalteleportationbetweenAliceandCharliebyusingtheBSMinadeterministicfashion.Tothisend,werevisetheprotocolatCharlietoacceptbothcommunicationqubitoutcomes,useallmemoryqubitreadoutpatterns,includingtheinconsistentones,anddisregardtheoutcomeoftheCRcheckaftertheBSM.UsingthisfullydeterministicBSMlowerstheaverageteleportationfidelitybyafewpercent(Fig.4d).Atthesametime,shorteningthedetectionwindowsofthetwo-nodeentanglementgenerationisexpectedtoyieldanimprovementinthefidelity,asdiscussedabove.Wefindthat,indeed,theaverageunconditionalteleportationfidelityincreaseswithshorterwindowlengths,reachingF = 0.688(10)foralengthof7.5 nsandarateof1/(100 s);seeExtendedDataFig.4.Thecurrentquantumnetworkisthusabletoperformteleportationbeyondtheclassicalbound,evenunderthestrictconditionthateverystateinsertedintotheteleporterbetransferred.OutlookInthiswork,wehaverealizedunconditionalqubitteleportationbetweennon-neighbouringnodesinaquantumnetwork.Theinnovationsintroducedhereonmemoryqubitreadoutandprotectionduringentanglementgeneration,aswellasthereal-timerejectionoffalseheraldingsignals,willbeinstrumentalinexploringmorecomplexprotocols2,11,12,13,26.Also,thesemethodscanbereadilytransferredtootherplatforms,suchasthegroupIVcolourcentresindiamond,thevacancy-relatedqubitsinSiCandsinglerare-earthionsinsolids27,28,29,30,31,32,33.Thedevelopmentofanimprovedopticalinterfaceforthecommunicationqubit34willincreaseboththeteleportationprotocolrateandfidelity.Becauseoftheimprovedmemoryqubitperformancereportedhere,thenetworkalreadyoperatesclosetothethresholdatwhichnodescanreliablydeliveraremoteentangledstatewhilepreservingpreviouslystoredquantumstatesintheirmemoryqubits.Withfurtherimprovements,forinstance,byintegratingmulti-pulsememorydecouplingsequences21intotheentanglementgeneration,demonstrationofdeterministicqubitteleportation(withnopre-sharedentangledstate)maycomewithinreach,whichopensthedoortoexploringapplicationsthatcalltheteleportationroutineseveraltimes.Inaddition,futureworkwillfocusonfurtherimprovingthephasestabilizationandextendingthecurrentschemesforuseindeployedfibre35.Finally,byimplementingarecentlyproposedlinklayerprotocol36,qubitteleportationandapplicationsmakinguseoftheteleportationprimitivemaybeexecutedandtestedonthenetworkthroughplatform-independentcontrolsoftware,animportantprerequisiteforalarge-scalefuturenetwork.MethodsExperimentalsetupThebasicsoftheexperimentalsetuparedescribedinref. 18.Inthecurrentexperiment,Charliehasaccesstoacarbon-13nuclearspinthatactsasamemoryqubit.TheparametersusedforthememoryqubitsofBobandCharliecanbefoundinExtendedDataTable3.Furthermore,wehavesetupaclassicalcommunicationchannelbetweenCharlieandAlice,suchthatCharliecandirectlysendtheresultsoftheBSMtoAlice.TemporalselectionofheraldingphotonsToeliminateanyreflectedexcitationlightintheheraldingdetectors,wemakeuseofacross-polarizationschemeandperformtemporalselectionofthedetectedphotonsasdescribedinref. 37.Westartthedetectionwindows4 ns(5 ns)afterthehighestintensitypointoftheexcitationpulse,fortheAB(BC)entangledlink,toensuresufficientsuppressionofexcitationlaserlightinthedetectionwindow.MemoryqubitcoherenceBobWeusethesequencedescribedinFig.3atopreservethestateofthememoryqubitduringentanglementattempts.Tocharacterizethedecouplingsequence,wecompareittothesequenceinwhichwedonotapplythedecouplingpulseonthememoryqubitand/orthesequenceinwhichweidleinsteadofperformingentanglementattempts.Wecharacterizethecoherenceofthememoryqubitbystoringthesixcardinalstates.Weaveragetheresultsfortheeigenstates\((|0\rangle,|1\rangle)\)andsuperpositionstates\((|\pm{\rm{X}}\rangle{\rm{and}}|\pm{\rm{Y}}\rangle).\)InExtendedDataFig.5a,weplottheBlochvectorlength\(b=\sqrt{{b}_{x}^{2}+{b}_{y}^{2}+{b}_{z}^{2}},\)withbitheBlochvectorcomponentindirectioni.Overthemeasuredrange,theeigenstatesshowlittledecay.Thedecayofthesuperpositionstatesisfittedwiththefunction\(f(x)=A{{\rm{e}}}^{-{(x/{N}_{1/{\rm{e}}})}^{n}}.\)ThefittedparameterscanbefoundinExtendedDataFig.5b.TheuseofthedecouplingpulseπMonthememoryqubitincreasestheN1/ebymorethanafactorof6.Moreover,theinitialBlochvectorlengthAishigherwiththeπMpulse.Thisismainlyexplainedbythesecondroundofphasestabilization18inbetweenswappingthestateontothememoryqubitandstartingtheentanglementgenerationprocess.Thephasestabilizationtakes≈350 μsand,duringthistime,thememoryqubitissubjecttointrinsic\({T}_{2}^{\ast}\)dephasing,whichcanbeefficientlydecoupledusingtheπMpulse.CommunicationqubitcoherenceInvariouspartsoftheprotocol,wedecouplethecommunicationqubitsfromthespinbathenvironmenttoextendtheircoherencetime.OnAlice,westartthedecouplingwhenthefirstentangledlinkisestablishedandstopwhentheresultsoftheBSMtoteleportthestatearesentbyCharlie.OnBob,wedecouplethecommunicationqubitwhenthememoryqubitisbeingrephased.OnCharlie,thecommunicationqubitisdecoupledfromthepointthatentanglementwithBobisheraldeduptothepointatwhichBobhasfinishedtheBSM,performedtheCRcheckandhascommunicatedtheresults.AllthesedecouplingtimesaredependentonhowmanyentanglementattemptsareneededtogeneratetheentangledlinkbetweenBobandCharlie.Wecharacterizetheaveragestatefidelitiesfordifferentdecouplingtimes;seeExtendedDataFig.6a.Weinvestigateeigenstatesandsuperpositionstatesseparately.Wefitthefidelitywiththefunction\(f(t)=A{{\rm{e}}}^{-{(t/{\tau}_{{\rm{coh}}})}^{n}}+0.5.\)ThefittedparametersaresummarizedinExtendedDataFig.6b.Foreachsetup,theminimumandmaximumdecouplingtimesusedareindicatedbytheshadedregionsinExtendedDataFig.6a.Theleft-mostborderisthedecouplingtimewhenthefirstentanglementattemptonBobandCharliewouldbesuccessfulandtheright-mostborderiswhenthelastattemptbeforethetimeoutof1,000attemptswouldheraldtheentangledstate.ModeloftheteleportedstateAdetailedmodeloftheteleportedstatecanbefoundathttps://doi.org/10.4121/16645969.Themodelcompriseselementsfromref. 18andisfurtherextendedfortheteleportationprotocol.Wetakethefollowingnoisesourcesintoaccount: ImperfectBellstatesbetweenAliceandBob,andbetweenBobandCharlie. DephasingofthememoryqubitofBobduringentanglementgenerationbetweenBobandCharlie. DepolarizingnoiseonthememoryqubitsofBobandCharlie,owingtoimperfectinitializationandswapgates. ReadouterrorsonthecommunicationqubitsofBobandCharlieandreadouterrorsonthememoryqubitsofBobandCharliewhenusingthebasis-alternatingreadoutscheme,whichresultinincorrectfeed-forwardgateoperationsaftertheBSMs. DepolarizingnoiseonAliceduringthedecouplingsequence. IonizationprobabilityonAlice. AnoverviewoftheinputparametersandtheeffectofthedifferenterrorsourcesaregiveninExtendedDataTable4.Calculationofteleportedstatefidelitywithoutfeed-forwardoperationInFig.4c,weshowthefidelityoftheteleportedstateincasenofeed-forwardoperationswouldhavebeenappliedonAlice.Toextractthisdata,wefollowthesamemethodasinref. 9.Weperformclassicalbitflipsonthemeasurementoutcomestocounteracttheeffectofthefeed-forwardgateoperations(asifthegatewasnotapplied)foreachBSMoutcome.Wedothisforallsixcardinalstatesandcomputetheaveragefidelity.Weassumetheerrorsofthegateinthefeed-forwardoperationstobesmall. Dataavailability Thedatasetsthatsupportthismanuscriptandthesoftwaretoanalysethemareavailableathttps://doi.org/10.4121/16645969. ReferencesKimble,H.J.Thequantuminternet.Nature453,1023–1030(2008).ADS CAS Article GoogleScholar Wehner,S.,Elkouss,D.&Hanson,R.Quantuminternet:avisionfortheroadahead.Science362,eaam9288(2018).ADS MathSciNet Article GoogleScholar Bennett,C.H.etal.TeleportinganunknownquantumstateviadualclassicalandEinstein-Podolsky-Rosenchannels.Phys.Rev.Lett.70,1895–1899(1993).ADS MathSciNet CAS Article GoogleScholar Bouwmeester,D.etal.Experimentalquantumteleportation.Nature390,575–579(1997).ADS CAS Article GoogleScholar Boschi,D.,Branca,S.,DeMartini,F.,Hardy,L.&Popescu,S.ExperimentalrealizationofteleportinganunknownpurequantumstateviadualclassicalandEinstein-Podolsky-Rosenchannels.Phys.Rev.Lett.80,1121–1125(1998).ADS MathSciNet CAS Article GoogleScholar Furusawa,A.etal.Unconditionalquantumteleportation.Science282,706–709(1998).ADS CAS Article GoogleScholar Olmschenk,S.etal.Quantumteleportationbetweendistantmatterqubits.Science323,486–489(2009).ADS CAS Article GoogleScholar Nölleke,C.etal.Efficientteleportationbetweenremotesingle-atomquantummemories.Phys.Rev.Lett.110,140403(2013).ADS Article GoogleScholar Pfaff,W.etal.Unconditionalquantumteleportationbetweendistantsolid-statequantumbits.Science345,532–535(2014).ADS MathSciNet CAS Article GoogleScholar Langenfeld,S.etal.Quantumteleportationbetweenremotequbitmemorieswithonlyasinglephotonasaresource.Phys.Rev.Lett.126,130502(2021).ADS CAS Article GoogleScholar Ben-Or,M.,Crépeau,C.,Gottesman,D.,Hassidim,A.&Smith,A.Securemultipartyquantumcomputationwith(only)astricthonestmajority.InProc.200647thAnnualIEEESymposiumonFoundationsofComputerScience(FOCS’06)249–258(IEEE,2006).Arora,A.S.,Roland,J.&Weis,S.Quantumweakcoinflipping.InProc.51stAnnualACMSymposiumonTheoryofComputing(STOC2019)205–216(ACM,2019).VanMeter,R.QuantumNetworking(Wiley,2014).Bao,X.-H.etal.Quantumteleportationbetweenremoteatomic-ensemblequantummemories.Proc.NatlAcad.Sci.109,20347–20351(2012).ADS CAS Article GoogleScholar Briegel,H.-J.,Dür,W.,Cirac,J.I.&Zoller,P.Quantumrepeaters:theroleofimperfectlocaloperationsinquantumcommunication.Phys.Rev.Lett.81,5932–5935(1998).ADS CAS Article GoogleScholar Cabrillo,C.,Cirac,J.I.,García-Fernández,P.&Zoller,P.Creationofentangledstatesofdistantatomsbyinterference.Phys.Rev.A59,1025–1033(1999).ADS CAS Article GoogleScholar Bose,S.,Knight,P.L.,Plenio,M.B.&Vedral,V.Proposalforteleportationofanatomicstateviacavitydecay.Phys.Rev.Lett.83,5158–5161(1999).ADS CAS Article GoogleScholar Pompili,M.etal.Realizationofamultinodequantumnetworkofremotesolid-statequbits.Science372,259–264(2021).ADS CAS Article GoogleScholar Humphreys,P.C.etal.Deterministicdeliveryofremoteentanglementonaquantumnetwork.Nature558,268–273(2018).ADS CAS Article GoogleScholar Legero,T.,Wilk,T.,Kuhn,A.&Rempe,G.Time-resolvedtwo-photonquantuminterference.Appl.Phys.B77,797–802(2003).ADS CAS Article GoogleScholar Bradley,C.etal.Aten-qubitsolid-statespinregisterwithquantummemoryuptooneminute.Phys.Rev.X9,031045(2019).CAS GoogleScholar Cramer,J.etal.Repeatedquantumerrorcorrectiononacontinuouslyencodedqubitbyreal-timefeedback.Nat.Commun.7,11526(2016).ADS CAS Article GoogleScholar Robledo,L.etal.High-fidelityprojectiveread-outofasolid-statespinquantumregister.Nature477,574–578(2011).ADS CAS Article GoogleScholar Jiang,L.etal.Repetitivereadoutofasingleelectronicspinviaquantumlogicwithnuclearspinancillae.Science326,267–272(2009).ADS CAS Article GoogleScholar vanEnk,S.J.,Lütkenhaus,N.&Kimble,H.J.Experimentalproceduresforentanglementverification.Phys.Rev.A75,052318(2007).ADS Article GoogleScholar Broadbent,A.,Fitzsimons,J.&Kashefi,E.Universalblindquantumcomputation.InProc.200950thAnnualIEEESymposiumonFoundationsofComputerScience517–526(IEEE,2009).Rose,B.C.etal.Observationofanenvironmentallyinsensitivesolid-statespindefectindiamond.Science361,60–63(2018).ADS CAS Article GoogleScholar Nguyen,C.etal.Quantumnetworknodesbasedondiamondqubitswithanefficientnanophotonicinterface.Phys.Rev.Lett.123,183602(2019).ADS CAS Article GoogleScholar Trusheim,M.E.etal.Transform-limitedphotonsfromacoherenttin-vacancyspinindiamond.Phys.Rev.Lett.124,023602(2020).ADS CAS Article GoogleScholar Son,N.T.etal.Developingsiliconcarbideforquantumspintronics.Appl.Phys.Lett.116,190501(2020).ADS CAS Article GoogleScholar Lukin,D.M.,Guidry,M.A.&Vučković,J.Integratedquantumphotonicswithsiliconcarbide:challengesandprospects.PRXQuantum1,020102(2020).Article GoogleScholar Kindem,J.M.etal.Controlandsingle-shotreadoutofanionembeddedinananophotoniccavity.Nature580,201–204(2020).ADS CAS Article GoogleScholar Chen,S.,Raha,M.,Phenicie,C.M.,Ourari,S.&Thompson,J.D.Parallelsingle-shotmeasurementandcoherentcontrolofsolid-statespinsbelowthediffractionlimit.Science370,592–595(2020).CAS Article GoogleScholar Ruf,M.,Wan,N.H.,Choi,H.,Englund,D.&Hanson,R.Quantumnetworksbasedoncolorcentersindiamond.J.Appl.Phys.130,070901(2021).ADS CAS Article GoogleScholar Grein,M.E.,Stevens,M.L.,Hardy,N.D.&BenjaminDixon,P.Stabilizationoflong,deployedopticalfiberlinksforquantumnetworks.InProc.2017ConferenceonLasersandElectro-Optics(CLEO2017)1–2(IEEE,2017).Dahlberg,A.etal.Alinklayerprotocolforquantumnetworks.InProc.ACMSpecialInterestGrouponDataCommunication(SIGCOMM’19)159–173,(ACM,2019).Hensen,B.etal.Loophole-freeBellinequalityviolationusingelectronspinsseparatedby1.3kilometres.Nature526,682–686(2015).ADS CAS Article GoogleScholar DownloadreferencesAcknowledgementsWethankS.Wehner,T.Taminiau,C.BradleyandH.deRiedmattenfordiscussions.WeacknowledgefinancialsupportfromtheEUFlagshiponQuantumTechnologiesthroughtheprojectQuantumInternetAlliance(EUHorizon2020,grantagreementno.820445);fromtheEuropeanResearchCouncil(ERC)throughanERCConsolidatorGrant(grantagreementno.772627toR.H.);fromtheNetherlandsOrganisationforScientificResearch(NWO)throughaVICIgrant(projectno.680-47-624)andtheZwaartekrachtprogramQuantumSoftwareConsortium(projectno.024.003.037/3368).S.B.acknowledgessupportfromanErwin-Schrödingerfellowship(QuantNet,no.J4229-N27)oftheAustrianNationalScienceFoundation(FWF).AuthorinformationAuthornotesS.BaierPresentaddress:InstitutfürExperimentalphysik,UniversitätInnsbruck,Innsbruck,AustriaTheseauthorscontributedequally:S.L.N.Hermans,M.PompiliAuthorsandAffiliationsQuTechandKavliInstituteofNanoscience,DelftUniversityofTechnology,Delft,TheNetherlandsS.L.N.Hermans, M.Pompili, H.K.C.Beukers, S.Baier, J.Borregaard & R.HansonAuthorsS.L.N.HermansViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarM.PompiliViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarH.K.C.BeukersViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarS.BaierViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarJ.BorregaardViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarR.HansonViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsS.L.N.H.,M.P.andR.H.devisedtheexperiment.S.L.N.H.,M.P.andH.K.C.B.carriedouttheexperimentsandcollectedthedata.S.L.N.H.,M.P.,H.K.C.B.andS.B.preparedtheexperimentalapparatus.J.B.developedthequantum-opticalmodel.S.L.N.H.andR.H.wrotethemainmanuscript,withinputfromallauthors.S.L.N.H.,M.P.andJ.B.wrotethesupplementarymaterials,withinputfromallauthors.S.L.N.H.andM.P.analysedthedataanddiscussedwithallauthors.R.H.supervisedtheresearch.CorrespondingauthorCorrespondenceto R.Hanson.Ethicsdeclarations Competinginterests Theauthorsdeclarenocompetinginterests. Peerreview Peerreviewinformation NaturethanksFlorianKaiserandtheother,anonymous,reviewer(s)fortheircontributiontothepeerreviewofthiswork. Peerreviewerreportsareavailable. AdditionalinformationPublisher’snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.ExtendeddatafiguresandtablesExtendedDataFig.1PSB-flaggedcorrelationsAlice–Bob.Top,histogramsofthedetectedPSBphotonsconditionedonasimultaneousZPLdetectionintheentanglementgenerationattempt,forAlice(left)andBob(right).Bottom,correspondingmeasuredcorrelationsinallbases.ThegreybarsintheZbasisrepresentthesimulatedvalues.FortheXandYbases,onewouldexpectaprobabilityof0.25foralloutcomes.Allerrorbarsrepresentonestandarddeviation.ExtendedDataFig.2PSB-flaggedcorrelationsBob–Charlie.Top,histogramsofthedetectedPSBphotonsconditionedonasimultaneousZPLdetectionintheentanglementgenerationattempt,forBob(left)andCharlie(right).Bottom,correspondingmeasuredcorrelationsinallbases.ThegreybarsintheZbasisrepresentthesimulatedvalues.FortheXandYbases,onewouldexpectaprobabilityof0.25foralloutcomes.Allerrorbarsrepresentonestandarddeviation.ExtendedDataFig.3Basis-alternatingrepetitivereadout.Basis-alternatingrepetitive(BAR)readoutresultsforCharlie’smemoryqubit.a,Readoutfidelityforeachreadoutrepetition, forstates \(|0\rangle\)and\(|1\rangle.\)b,ReadoutfidelityoftheBARreadoutschemefordifferentnumberofreadoutrepetitions.c,Fractionofinconsistentreadoutpatternsfordifferentnumberofreadoutrepetitions.Thedashedlinesrepresentanumericalmodelusingmeasuredparameters,whichcanbefoundathttps://doi.org/10.4121/16645969.Allerrorbarsrepresentonestandarddeviation.ExtendedDataFig.4Experimentalrates.Experimentalratesoftheconditionalandunconditionalteleportationprotocolfordifferentdetectionwindowlengthsinthetwo-nodeentanglementgeneration.ExtendedDataFig.5Memoryqubitcoherence.a,CoherenceofBob’smemoryqubitforsuperpositionstates(trianglesandcircles)andeigenstates(squaresanddiamonds).WeperformthesequenceasdescribedinthemaintextwithandwithoutthedecouplingpulseπMonthememoryqubit,thedarkblueandpurplepoints,respectively.Furthermore,weperformthesequencewithawaittimeinsteadofentanglementattemptswith(pinkpoints)andwithout(yellowpoints)thedecouplingpulse.Thegreydashedlineindicatesthetimeoutoftheentanglementgenerationprocessusedintheteleportationprotocol.b,Fittedparametersforthememorycoherencedecayofthesuperpositionstates.Allerrorbarsrepresentonestandarddeviation.ExtendedDataFig.6Communicationqubitcoherence.a,Decouplingofthecommunicationqubits.Theaveragestatefidelityisplottedfordifferentdecouplingtimesforeachsetup.Theshadedarearepresentsthedecouplingtimesusedintheteleportationprotocol.b,Fittedparametersforaveragestatefidelityduringcommunicationqubitdecoupling.Allerrorbarsrepresentonestandarddeviation.ExtendedDataTable1TeleportedstatefidelitiesFullsizetableExtendedDataTable2AverageteleportedstatefidelitiesperBSMoutcomeFullsizetableExtendedDataTable3MemoryqubitcharacteristicsFullsizetableExtendedDataTable4Two-nodeandteleportationsimulationparametersFullsizetableSupplementaryinformation SupplementaryInformationThisfilecontainsSupplementaryText;equations,figures,tablesandreferences.PeerReviewFileRightsandpermissions OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle’sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle’sCreativeCommonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicense,visithttp://creativecommons.org/licenses/by/4.0/. ReprintsandPermissionsAboutthisarticleCitethisarticleHermans,S.L.N.,Pompili,M.,Beukers,H.K.C.etal.Qubitteleportationbetweennon-neighbouringnodesinaquantumnetwork. Nature605,663–668(2022).https://doi.org/10.1038/s41586-022-04697-yDownloadcitationReceived:05October2021Accepted:29March2022Published:25May2022IssueDate:26May2022DOI:https://doi.org/10.1038/s41586-022-04697-ySharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative CommentsBysubmittingacommentyouagreetoabidebyourTermsandCommunityGuidelines.Ifyoufindsomethingabusiveorthatdoesnotcomplywithourtermsorguidelinespleaseflagitasinappropriate. DownloadPDF AssociatedContent Breakthroughinteleportationfurthersquantumnetworkdevelopment OliverSlatteryYong-SuKim Nature News&Views 25May2022 Advertisement Explorecontent Researcharticles News Opinion ResearchAnalysis Careers Books&Culture Podcasts Videos Currentissue Browseissues Collections Subjects FollowusonFacebook FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal JournalStaff AbouttheEditors JournalInformation Ourpublishingmodels EditorialValuesStatement JournalMetrics Awards Contact Editorialpolicies HistoryofNature Sendanewstip Publishwithus ForAuthors ForReferees Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing
延伸文章資訊
- 1Quantum teleportation - Wikipedia
Quantum teleportation is a technique for transferring quantum information from a sender at one lo...
- 2Quantum Teleportation - an overview ... - ScienceDirect.com
- 3Teleportation breakthrough paves the way for quantum internet
As Hanson explains: “The key feature of quantum teleportation is that the quantum information its...
- 4Quantum Teleportation - Qiskit
Quantum teleportation is designed to send qubits between two parties. We do not have the hardware...
- 5Quantum Internet Is a Step Closer After ... - Singularity Hub
One workaround is to exploit another quantum phenomenon called teleportation. This works much lik...