Quantum teleportation with one classical bit | Scientific Reports
文章推薦指數: 80 %
Quantum teleportation is a strikingly curious quantum phenomenon with myriads of applications ranging from secure quantum communication to ... Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature scientificreports articles article Quantumteleportationwithoneclassicalbit DownloadPDF DownloadPDF Subjects ComputerscienceInformationtechnologyQuantumphysics AbstractQuantumteleportationallowsonetotransmitanarbitraryqubitfrompointAtopointBusingapairof(pre-shared)entangledqubitsandclassicalbitsofinformation.Theconventionalprotocolforteleportationusestwobitsofclassicalinformationandassumesthatthesenderhasaccesstoonlyonecopyofthearbitraryqubittobe sent.Here,weaskwhetherwecandobetterthantwobitsofclassicalinformationifthesenderhasaccesstomultiplecopiesofthequbittobeteleported.Weplacenorestrictionsonthequbitstates.Consequently,weproposeamodifiedquantumteleportationprotocolthatallowsAlicetoresetthestateoftheentangledpairtoitsinitialstateusingonlylocaloperations.Asaresult,theproposedteleportationprotocolrequiresthetransmissionofonlyoneclassicalbitwithaprobabilitygreaterthanone-half.Thishasimplicationsforefficientquantumcommunicationsandthe securityofquantumcryptographicprotocolsbasedonquantumentanglement. IntroductionQuantumteleportation1,2isastrikinglycuriousquantumphenomenonwithmyriadsofapplicationsrangingfromsecurequantumcommunicationtodistributedquantumcomputing3,4,5,6,7.FirstpresentedbyBennettetal.1,quantumteleportationallowsonetorecreateanarbitraryqubitfromjusttwobitsofclassicalinformation.Thepreconditionisthatthetwocommunicatingpartiesshareanentangledpairofqubits.Entanglement,essentially,transmitstherawvaluesofamplitudespresentinthearbitraryqubitandtheclassicalbitsprovideafinal“correction”tothesevalues.Quantumteleportationhasproventobeaninvaluabletoolinquantuminformationscience8,9,10.Quantumteleportationenablesthedevelopmentofquantumrepeaters3,11,apivotaltechnologyfortheestablishmentofquantumcommunicationnetworks12,andingeneraltheframeworkofquantumInternet.Quantumteleportationhasbeenimplementedinlabsettingusinganumberofdifferentresources13,14.Lastly,anumberofcryptographicprotocolsusesharedentangledqubitsandoperationsequivalenttoteleportationtoproducerandomnumbersandencryptionkeys15.Itisknownthat,givenapre-sharedBellpair,theteleportationofanunknownqubit,requiresthetransmissionoftwoclassicalbits1.Moregenerally,theteleportationofanN-staterequires2\(log_2N\)classicalbits16.This,however,assumesthatthesenderhasaccesstoonlyonecopyofthearbitraryunknownqubitthatsheisteleporting.Kakinvestigatedtheminimumnumberofclassicalbitsrequiredforteleportation17.Inturn,heproposedthreevariationsonBennett’sprotocolthatrequiredfewerthantwoqubits.Twoofthesevariations,however,useanon-traditionalsetupwheretheentangledqubitsarenotpre-sharedbetweenthecommunicatingpartiesbuttransmittedalongwiththeclassicalbitsofinformation.Thischangeinthesetupcanbelookeduponasanencryptionsystemwheretheclassicalbitofinformationactsastheencryptionkeyforthequbitandmultipathroutingcanbeusedfortheirtransmission.Fromtheviewpointofteleportation,nevertheless,ifthequbitsaretobetransmittedalongwithclassicalbits,thenonecouldtransmitthearbitraryqubitdirectlyatthattimewithouttheneedtoresortingtoteleportation.However,itdoespointouttothepossibilityofsome“non-standard”settingofquantumteleportationhavinglowerclassicalcostofcommunication.Onesuch“non-standard”settingwasinvestigatedbyPati18wheretheteleportedqubitarosefromaspecificportionoftheBlochsphereleadingtoaone-bitclassicalcommunicationcost.ThiswasfurtherinvestigatedbyLoasremotestatepreparation19.Inthispaper,wetooconsiderasomewhatnon-standardsettingbutintermsofresources.Likethetraditionalteleportationprotocol,weassumethatthecommunicatingpartiespre-shareentangledqubits.However,weconsiderthecasewhenthesenderhasmorethanonecopyofan(unknown)arbitraryqubit\(\left|{\phi}\right\rangle=a\left|{0}\right\rangle+b\left|{1}\right\rangle\),\(|a|^2+|b|^2=1\).Wedonotplaceanyotherrestrictionsonthequbits.Suchapossibilityhasnotbeeninvestigatedbefore.Ourresultshowsthatundersuchassetting,wecandobetterthantwoclassicalbitsofcommunication.Asendermayhavemultiplecopiesofthequbittobeteleportedinmanypracticalsituationswheretheunknownqubitiseithertheresultofaperiodicoron-demandnaturalprocessoroutputofaquantumalgorithm.Onemayneedtosendthis(unmeasured)outputtothereceiverforfurtherprocessing.Weshowthattheteleportationofsuchaqubitrequiresthetransmissionofonlyoneclassicalbitwithaprobabilitygreaterthanone-half.Inordertodoso,weproposearesetprocedurethatallowsfortherecreationoftheoriginalsharedBellstateusingonlylocaloperationsatthesender’sendandnoconsumptionofresourcesatreceiver’send.Intheproposedresetprocedure,aswithconventionalteleportationprotocol,webeginwithmaximallyentangledqubits.Atthefirststageoftheprotocol,ifthismaximallyentangledqubitentersintoadesiredstatewemoveontothesecondstageoftheprotocol.If,ontheotherhand,theentangledpartendsupinanundesiredstateweresetitbacktotheoriginalstateusingonlylocaloperationsatthesender’send.Thecostofdoingsoisonecopyofthearbitraryqubit,\(\left|{\phi}\right\rangle\).Furthermore,iftheamplitudesaandbareknownand/orthequbit,\(\left|{\phi}\right\rangle\),generatedondemand,thentheresetoperationmaybeattemptedmanytimesover.Theresultpresentedinthispaper,webelieve,representsafundamentaladvanceintheclassicalburdenofteleportation,sinceitwasproposedbyBennettetal.1,becausewedonotrestrictthestatesofthequbitandallowthepartiestopre-shareentangledpairsasinthetraditionalsetting.Thepresentedresultalsohaswidespreadconsequencesforquantumcryptographicprotocolsthatuseentangledpairsandassumeasymmetricpowerbetweencommunicatingparties.ResultItisusefultothinkoftheconventionalteleportationprotocolasatwostagesystem19.WestartwithasharedBellpair\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\)betweensender,Alice,andreceiver,Bob.Thefirststageoftheteleportationprotocolintroducestheamplitudesaandbintotheentangledpair.However,thelocationsoftheamplitudesmaybeflippedandiscorrectedwiththeapplicationofPauliXgatebyboththesenderandthereceiver.Thisrequiresthetransmissionof1-bitofclassicalinformationtoBob.Inthesecondstageoftheprotocol,AliceterminatestheentanglementbymeasuringherqubitoftheBellpairintheHadamardbasis.ThisintroducesanotherundesirableerrorintothestateofthequbitthatBobholdscorrespondingtothePauliZgate.ThisiscorrectedbythetransmissionofanotherclassicalbitofinformationtoBob.Tobemoreprecise,inBennett’sprotocol1attheendofthefirststagethetwopartiessharethestate\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\)or\(b\left|{00}\right\rangle+a\left|{11}\right\rangle\).Thefirstofthesestatesisdesirableandthesecondoneisconvertedtothefirstonewiththeapplicationofabi-localunitarytransformation\(\left|{0}\right\rangle\rightarrow\left|{1}\right\rangle\).ThisrequiresonebittobesenttoBob.Inthesecondstageoftheprotocol,Bobendsupwith\(a\left|{0}\right\rangle+b\left|{1}\right\rangle\)or\(a\left|{0}\right\rangle-b\left|{1}\right\rangle\).ThecorrectionofthelaststaterequirestheotherbitofinformationtobesenttoBob.IntheendBobisleftwith\(a\left|{0}\right\rangle+b\left|{1}\right\rangle\),whichcorrespondstotheunknownstate\(\left|{\phi}\right\rangle\)thatAlicewantedtoteleport.Inthispaper,weaskasimplequestion:ifAliceendsupintheundesiredstateattheendofthefirststage,i.e.\(b\left|{00}\right\rangle+a\left|{11}\right\rangle\),cansheusingonlylocaltransformationsresetthestateofthesharedentanglementtotheoriginalstate\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\)?Ifso,shecanreattempttheteleportationprotocol.ResettingtheentangledstateInordertoresettheentangledstate,Aliceintroducesanancillaryqubit\(\left|{\theta}\right\rangle=c\left|{0}\right\rangle+d\left|{1}\right\rangle\)intothesystem.Itwill becomeapparentthroughthefollowingdiscussionthat\(\left|{\theta}\right\rangle=\left|{\phi}\right\rangle\).Theresultingsystemstateisgivenby\(\left|{\psi}\right\rangle\),$$\begin{aligned}\begin{aligned}\left|{\psi}\right\rangle&=\left|{\theta}\right\rangle\left(a\left|{1_A1_B}\right\rangle+b\left|{0_A0_B}\right\rangle\right)\\&=\left(c\left|{0_l}\right\rangle+d\left|{1_l}\right\rangle\right)\left(a\left|{1_A1_B}\right\rangle+b\left|{0_A0_B}\right\rangle\right)\\&=ca\left|{0_l1_A1_B}\right\rangle+cb\left|{0_l0_A0_B}\right\rangle+da\left|{1_l1_A1_B}\right\rangle+db\left|{1_l0_A0_B}\right\rangle\end{aligned}\end{aligned}$$ (1) QubitswithsubscriptslandAarewithAliceandthequbitdenotedbysubscriptBiswithBob.Now,AliceappliesCNOTwiththeancillaryqubit(thefirstqubit)asthecontrolqubitandsecondqubitasthetargetqubit.Thestatethenbecomes,$$\begin{aligned}\begin{aligned}\left|{\psi}\right\rangle&=ca\left|{0_l1_A1_B}\right\rangle+cb\left|{0_l0_A0_B}\right\rangle+da\left|{1_l0_A1_B}\right\rangle+db\left|{1_l1_A0_B}\right\rangle\\&=\left|{1_A}\right\rangle\left(ca\left|{0_l1_B}\right\rangle+db\left|{1_l0_B}\right\rangle\right)+\left|{0_A}\right\rangle\left(cb\left|{0_l0_B}\right\rangle+da\left|{1_l1_B}\right\rangle\right)\end{aligned}\end{aligned}$$ (2) InEq. (2)above,wehaveremovedthesecondqubitasthecommonqubitforsimplificationoftheexpression.Weseethat\(\left|{0_A}\right\rangle(cb\left|{0_l0_B}\right\rangle+da\left|{1_l1_B}\right\rangle)\)isclosesttothedesiredstate\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\).Ifweset\(c=a\)and\(d=b\)thenweget,$$\begin{aligned}\left|{\psi}\right\rangle=\left|{1_A}\right\rangle\left(aa\left|{0_l1_B}\right\rangle+bb\left|{1_l0_B}\right\rangle\right)+\left|{0_A}\right\rangle\left(ab\left|{0_l0_B}\right\rangle+ba\left|{1_l1_B}\right\rangle\right)\end{aligned}$$ (3) Alicenowmeasuresthesecondqubit.Shewillsee\(\left|{0}\right\rangle\)withprobability\(2|ab|^2\)andthesharedentangledqubitsendupinstate\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\).ThisconstitutesasuccessfulresetbyAlice.Notethat,setting\(c=a\)and\(d=b\)meansthatAliceissimplyusingacopyoftheoriginalqubit\(\left|{\phi}\right\rangle\)fortheresetoperationanddoesnotneedtocreateanynewspecialancillaryqubits.OncearesettotheoriginalBellstateisachieved,Alicereinitiatestheteleportationprotocolusingafreshcopyof\(\left|{\phi}\right\rangle\).Ontheotherhand,Alice’smeasurementresultsin\(\left|{1}\right\rangle\)withprobability\(|a^2|^2+|b^2|^2\).Thistakesthesystemto thestate\(\frac{a^2\left|{01}\right\rangle+b^2\left|{10}\right\rangle}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\).AlicecanapplytheXgatetoherqubitandreattempttheresetoperationwith\(\frac{a^2}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\)and\(\frac{b^2}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\)asthenewaandbvalues,respectively.Atthispoint,Alicehasconsumedtwocopiesof\(\left|{\phi}\right\rangle\).Oneduringstageoneoftheteleportationprotocolandsecondastheancillaryqubitintroducedintothesystemduringtheresetoperation.Figure 1showsthebranchesthatateleportationattemptwiththeproposedresetprocedurecanfollow.Figure1DecisiontreeatAlice’sendforteleportationwiththeproposedresetoperation.Probabilitiesareshownalongthearmsbetweenthenodes.StatesintheredboxesresidewithBob.FullsizeimageDiscussionTheprobabilityofsuccessoftheresetattemptsvarywiththevaluesofamplitudesaandb,inthestate\(\left|{\phi}\right\rangle\),andisgivenby\(2|ab|^2\)forthefirstresetattempt.Since,\(|ab|^2=|a|^2|b|^2=|a|^2(1-|a|^2)=|a|^2-|a|^4\)and\(0\le|a|^2\le1\),weget\(|ab|^2\le\frac{1}{4}\)and\(2|ab|^2\le\frac{1}{2}\).Forexample,when\(a=\frac{i}{\sqrt{2}}\)and\(b=\frac{1}{2}+\frac{i}{2}\),theprobabilitythatthefirstresetattemptwillsucceedis\(\frac{1}{2}\).Afterasuccessfulreset,Alicemakesasecondattempttoteleportthequbit.Theprobabilitythatentangledqubitswillcollapseintothedesirablestate(\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\))isagain\(\frac{1}{2}\).Therefore,withprobability\(\frac{1}{2}+\frac{1}{4}\)Alicewouldtransmitjustonebitforteleportationbutmusthaveatleastthreecopiesof\(\left|{\phi}\right\rangle\)atherdisposal.Remarkably,thequbit\(\left|{\phi}\right\rangle\)remainsunknownandarbitrary.Consequently,ingeneral,consideringonlythefirstresetattemptandanunknownqubit\(\left|{\phi}\right\rangle\)theprobabilityofendingupinthedesiredstate(\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\)),thatisasuccessfulteleportationwithonlyone-classicalbit,is\(\frac{1}{2}+\frac{1}{2}\cdot2|ab|^2=\frac{1}{2}+|ab|^2\).Note,thisprobabilityisalwayssetto\(\frac{1}{2}\)inBennettetal.’squantumteleportation1protocolwhichalwaysrequirestwobitsofinformationtobetransmitted.Alice,however,doesrequirethevaluesofaandbfortheresetattemptsbeyondthefirstone;inthecaseofaresetfailure.Thislattercaseisusefulwhentheprecisionrequiredforclassicalrepresentationoftheaandbvaluesexceedstheavailablebandwidthorresourcesavailableontheclassicalchannel.Inotherwords,ifthevaluesofaandbareknown,Alicecanpursuetheresetattemptsuntilitsucceeds.Notethatoncearesetattemptsucceeds,theprobabilitythatwewillendupinthedesiredentangledstateisagain\(\frac{1}{2}\).Therefore,theexpectednumberofattempts,givenasuccessfulreset,is2.Theresetprocedurepresentedabove,whensuccessful,reducestheteleportationprotocoltoonestageprotocolunderthestandardsettingofpre-sharedBellstates.Furthermore,Aliceknowsateachstagewhethertheresethassucceededornot.Intheworstcase,ifthevaluesofaandbarenotknownandtheresetfails,shecanabandonthatparticularpairofentangledqubitsanduseanother.Thecomputationalburdenofteleportationwithresetcanthenbestatedas,$$\begin{aligned}H(T)=\left[\left(\frac{1}{2}+|ab|^2\right)(1)+\left(\frac{1}{2}-|ab|^2\right)(2)\right]\text{bits}\end{aligned}$$ (4) Itiseasytoseethat\(1.25\leH(T)\le1.5\)dependingonthevaluesofaandb.Forcomparison,oneoftheprotocolsbyKak17reducesthecomputationalburdento1.5bitswhentheBellstatesarepre-shared.Thecostofreducingthecomputationalburdento1.25bits,therefore,istheexpenditureofextracopiesoftheunknownqubit\(\left|{\phi}\right\rangle\).Inotherwords,theprobability\(\frac{1}{2}+|ab|^2\)onlyrepresentstheaveragecase.GiventhattheproposedprotocolisprobabilisticinnatureandifAlicehasseveralqubitstoteleport,shemayendupwithasituationwhereallherresetattemptsmaysucceedresultingina1bitperqubitforteleportationevenforacompletelyarbitraryunknownqubit!OnemayarguethateveninBennett’soriginalteleportationprotocol1,AliceandBobmayagreeonaschemesuchasthefollows:ifstageoneoftheprotocolsucceedsincreating\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\)thentheywillproceedwithstagetwoandifstageoneresultsin\(a\left|{11}\right\rangle+b\left|{00}\right\rangle\),theywillabandontheentangledpair.Suchamodificationwouldalsobeprobabilisticandresultin1bitperqubitforteleportation.However,wepointoutthattheprobabilityof1bitperqubitinsuchamodifiedBennett’sprotocolwouldbestuckat\(\frac{1}{2}\).Whereas,ourresetprocedureallowsthisprobabilitytobe\(\frac{1}{2}+|ab|^2\)whichisgreaterthan\(\frac{1}{2}\)forallpracticalpurposes.Theprobabilityofsuccessfortheresetoperationateveryattemptchangeswiththeamplitudesaandbandisgivenbyarecursiverelationship.If\(R_0,R_1,R_2,\ldots\)representsuccessiveresetattemptsthentheprobabilityofsuccessofeachresetisgivenby,$$\begin{aligned}\begin{aligned}P(R_0)&=2|ab|^2\\P(R_1)&=2|a_1b_1|^2\text{where}a_1=\frac{a^2}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\text{and}b_1=\frac{b^2}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\\P(R_2)&=2|a_2b_2|^2\text{where}a_2=\frac{a_1^2}{\sqrt{\left|{{a_1^2}}\right|^2+\left|{{b_1^2}}\right|^2}}\text{and}b_2=\frac{b_1^2}{\sqrt{\left|{{a_1^2}}\right|^2+\left|{{b_1^2}}\right|^2}}\\&\quad\text{and}\text{so}\text{on.}\end{aligned}\end{aligned}$$ (5) Therefore,theprobabilitythatAlicewouldneedthreeresetattemptsisgivenby\((1-P(R_0))(1-P(R_1))P(R_2)\).Forastatesuchas\(\frac{\left|{0}\right\rangle+\left|{1}\right\rangle}{\sqrt{2}}\)thiswouldbe\((1-\frac{1}{2})(1-\frac{1}{2})(\frac{1}{2})=\frac{1}{8}\).AnimportantimplicationofEq. (4)isthatwhen\(|ab|^2>0\)thereisanon-zeroprobabilityofasuccessfulreset.Theequality,\(|ab|^2=0\),holdsonlywhenoneoftheamplitudesaorb=0,acornercase.Asaresult,theaboveprotocolbreaksthesymmetrybetweenthefourcasesoftheconventionalteleportationprotocol1.Moreprecisely,intheconventionalteleportationprotocol,thereisanequalprobabilityforBobtoendupinanyofthefourstates:\(\left|{\phi_0}\right\rangle=a\left|{0}\right\rangle+b\left|{1}\right\rangle\),\(\left|{\phi_1}\right\rangle=a\left|{0}\right\rangle-b\left|{1}\right\rangle\),\(\left|{\phi_2}\right\rangle=b\left|{0}\right\rangle+a\left|{1}\right\rangle\),and\(\left|{\phi_3}\right\rangle=b\left|{0}\right\rangle-a\left|{1}\right\rangle\).Consequently,twoclassicalbitswereneededforteleportation.However,withtheproposedresetoperationtherelationshipbetweentheprobabilitiesofthestatesthatBobseesisgivenby,$$\begin{aligned}P\left(\left|{\phi_0}\right\rangle\right)+P\left(\left|{\phi_1}\right\rangle\right)>P\left(\left|{\phi_2}\right\rangle\right)+P\left(\left|{\phi_3}\right\rangle\right)\end{aligned}$$ (6) Foramomentonlyconsiderthefirststageoftheteleportationprotocolandtheresetoperation.AssumethatAlicehasnottransmittedanyinformationtoBob.Weseethat,theresetoperationalsoimpliesthatwhen\(a,b\ne0\),Alicecanunilaterallyforcethesharedentanglement,\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\)tobeconvertedto\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\)withaprobabilityhigherthan\(\frac{1}{2}\)andnocommunicationwithBob.Ifthequbit\(\left|{\phi}\right\rangle\)isdeliberatelyconstructedbyAliceandtheinformationAlicewantstotransmitisencodedinthevaluesofaandbratherthanthephasedifferencebetweenthem,thenAlicehassuccessfullyinducedabiasinBob’squbit.Theabilityofonepartyto,unilaterally,induceabiasinasharedentangledpairgivesapartywantingtocheat,inacryptographicprotocol,anadvantage.Forexample,severalquantumkeyagreementprotocolshavebeenproposedinliterature20,21,22,23,24,25.Theseprotocolsaredesignedsuchthatboththecommunicatingpartiesmakeequalcontributiontothefinalagreedkey.ThisisincontrasttotraditionalquantumkeydistributionprotocolssuchasBB84whereonepartydeterminestheentirekeyandsecurelydistributesittotheotherparty.Ifthequantumkeyagreementprotocolisbasedonentanglementthenoneofthecheatingpartiescaninduceabiasinthefinalkeystreambyintroducinganappropriate\(\left|{\phi}\right\rangle\)inthesystem.ThesimplestexampleofaweakquantumkeyagreementprotocolistheE91protocolwherebothpartiesmakerandommeasurementsonmaximallyentangledpairsofqubits.IfthesemaximallyentangledpairsaredistributedbyacentralauthoritythenAlice(cheatingparty)canintroduce\(\left|{\phi}\right\rangle=a\left|{0}\right\rangle+b\left|{1}\right\rangle\)suchthat\(|a|^2\neq|b|^2\)resultinginabiasedmeasurementresult,atBob’send,ofherownchoosing.Therefore,theasymmetrycausedbytheresetoperationgivesAlicemorepowerthanBobandisdevastatingforcryptographicprotocolsthatuseentanglementandrelyonthepowersofthecommunicatingpartiesbeingsymmetricforsecurity.Inthispaper,wehaveonlyconsideredtheidealcasewherethesharedentangledpairismaximallyentangled.Investigationintohowtheresetprocedurewouldproceedinthecaseofnon-maximallyentangledstates,mixedstates,non-idealmeasurementsandchannelerrorsareleftasfuturework.Entanglementdistillation26couldbeusedtomitigatetheeffectsofthesenon-idealcases. ReferencesBennett,C.H.etal.TeleportinganunknownquantumstateviadualclassicalandEinstein-Podolsky-Rosenchannels.Phys.Rev.Lett.70,1895–1899.https://doi.org/10.1103/PhysRevLett.70.1895(1993).ADS MathSciNet CAS Article PubMed MATH GoogleScholar Gauthier,D.J.SuperluminalCommunicationinQuantumMechanics766–769(Springer,2009).https://doi.org/10.1007/978-3-540-70626-7_217.Book GoogleScholar Briegel,H.-J.,Dür,W.,Cirac,J.I.&Zoller,P.Quantumrepeaters:Theroleofimperfectlocaloperationsinquantumcommunication.Phys.Rev.Lett.81,5932–5935.https://doi.org/10.1103/PhysRevLett.81.5932(1998).ADS CAS Article GoogleScholar Gottesman,D.&Chuang,I.L.Demonstratingtheviabilityofuniversalquantumcomputationusingteleportationandsingle-qubitoperations.Nature402,390–393(1999).ADS CAS Article GoogleScholar Raussendorf,R.&Briegel,H.J.Aone-wayquantumcomputer.Phys.Rev.Lett.86,5188–5191.https://doi.org/10.1103/PhysRevLett.86.5188(2001).ADS CAS Article PubMed GoogleScholar Kimble,H.J.Thequantuminternet.Nature453,1023–1030(2008).ADS CAS Article GoogleScholar Gottesman,D.&Chuang,I.L.Demonstratingtheviabilityofuniversalquantumcomputationusingteleportationandsingle-qubitoperations.Nature402,390–393.https://doi.org/10.1038/46503(1999).ADS CAS Article GoogleScholar Weedbrook,C.etal.Gaussianquantuminformation.Rev.Mod.Phys.84,621–669.https://doi.org/10.1103/RevModPhys.84.621(2012).ADS Article GoogleScholar Braunstein,S.L.&vanLoock,P.Quantuminformationwithcontinuousvariables.Rev.Mod.Phys.77,513–577.https://doi.org/10.1103/RevModPhys.77.513(2005).ADS MathSciNet Article MATH GoogleScholar Wilde,M.M.QuantumInformationTheory2ndedn.(CambridgeUniversityPress,2017).Book GoogleScholar Ghalaii,M.&Pirandola,S.Capacity-approachingquantumrepeatersforquantumcommunications.Phys.Rev.A102,062412.https://doi.org/10.1103/PhysRevA.102.062412(2020).ADS MathSciNet CAS Article GoogleScholar Stephen Binkley,J.,Carl Williams,S. J.&Tahan,C.Acoordinatedapproachtoquantumnetworkingresearch.https://www.quantum.gov/wp-content/uploads/2021/01/A-Coordinated-Approach-to-Quantum-Networking.pdf(2021).Llewellyn,D.etal.Chip-to-chipquantumteleportationandmulti-photonentanglementinsilicon.Nat.Phys.16,148–153.https://doi.org/10.1038/s41567-019-0727-x(2020).CAS Article GoogleScholar Khatri,S.,Brady,A.J.,Desporte,R.A.,Bart,M.P.&Dowling,J.P.Spookyactionataglobaldistance:Analysisofspace-basedentanglementdistributionforthequantuminternet.npjQuantumInf.7,4.https://doi.org/10.1038/s41534-020-00327-5(2021).ADS Article GoogleScholar Shenoy-Hejamadi,A.,Pathak,A.&Radhakrishna,S.Quantumcryptography:Keydistributionandbeyond.Quanta6,1–47(2017).MathSciNet Article GoogleScholar Chau,H. F.&Lo,H.-K.Howmuchdoesitcosttoteleport?In4thWorkshoponPhysicsandComputation(PhysComp96)(1996).arXiv:quant-ph/9605025.Kak,S. C.Teleportationprotocolsrequiringonlyoneclassicalbit.arXiv(2003).arXiv:quant-ph/0305085.Pati,A.K.Minimumclassicalbitforremotepreparationandmeasurementofaqubit.Phys.Rev.A63,014302.https://doi.org/10.1103/PhysRevA.63.014302(2000).ADS Article GoogleScholar Lo,H.-K.Classical-communicationcostindistributedquantum-informationprocessing:Ageneralizationofquantum-communicationcomplexity.Phys.Rev.A62,012313.https://doi.org/10.1103/PhysRevA.62.012313(2000).ADS Article GoogleScholar Zhou,N.Quantumkeyagreementprotocol.Electron.Lett.40,1149–1150(2004).ADS Article GoogleScholar Cao,H.&Ma,W.Multipartyquantumkeyagreementbasedonquantumsearchalgorithm.Sci.Rep.7,45046(2017).ADS CAS Article GoogleScholar Yin,X.,Ma,W.&Liu,W.Y.Three-partyquantumkeyagreementwithtwo-photonentanglement.Int.J.Theor.Phys.52,3915–3921(2013).MathSciNet Article GoogleScholar Huang,W.-C.,Yang,Y.-K.,Jiang,D.&Chen,L.Efficienttravelling-modequantumkeyagreementagainstparticipant’sattacks.Sci.Rep.9,16421(2019).ADS Article GoogleScholar Chong,S.-K.,Tsai,C.-W.&Hwang,T.Improvementon“quantumkeyagreementprotocolwithmaximallyentangledstates’’.Int.J.Theor.Phys.50,1793–1802(2011).Article GoogleScholar Shi,R.-H.&Zhong,H.Multi-partyquantumkeyagreementwithbellstatesandbellmeasurements.QuantumInf.Process.12,921–932(2013).ADS MathSciNet Article GoogleScholar Bennett,C.H.,Bernstein,H.J.,Popescu,S.&Schumacher,B.Concentratingpartialentanglementbylocaloperations.Phys.Rev.A53,2046–2052.https://doi.org/10.1103/PhysRevA.53.2046(1996).ADS CAS Article PubMed GoogleScholar DownloadreferencesAuthorinformationAuthorsandAffiliationsUniversityofNebraska,Omaha,NE,68116,USAAbhishekParakhAuthorsAbhishekParakhViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsIamthesoleauthorofthepaper.CorrespondingauthorCorrespondenceto AbhishekParakh.Ethicsdeclarations Competinginterests Theauthorsdeclarenocompetinginterests. AdditionalinformationPublisher'snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.Rightsandpermissions OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicence,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicence,visithttp://creativecommons.org/licenses/by/4.0/. ReprintsandPermissionsAboutthisarticleCitethisarticleParakh,A.Quantumteleportationwithoneclassicalbit. SciRep12,3392(2022).https://doi.org/10.1038/s41598-022-06853-wDownloadcitationReceived:21October2021Accepted:07February2022Published:01March2022DOI:https://doi.org/10.1038/s41598-022-06853-wSharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative CommentsBysubmittingacommentyouagreetoabidebyourTermsandCommunityGuidelines.Ifyoufindsomethingabusiveorthatdoesnotcomplywithourtermsorguidelinespleaseflagitasinappropriate. DownloadPDF Advertisement Explorecontent Researcharticles News&Comment Collections Subjects FollowusonFacebook FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal AboutScientificReports Journalpolicies Guidetoreferees Contact CallsforPapers Editor'sChoice GuestEditedCollections ScientificReportsTop1002019 ScientificReportsTop1002018 ScientificReportsTop102018 ScientificReportsTop1002017 EditorialBoardHighlights AuthorHighlights Announcements 10thAnniversaryEditorialBoardInterviews ScientificReportsTop1002020 ScientificReportsTop1002021 Publishwithus Forauthors Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing
延伸文章資訊
- 1Quantum Teleportation - an overview ... - ScienceDirect.com
Quantum teleportation allows two parties that are far apart to exchange unknown qubits among them...
- 2Quantum Teleportation - an overview ... - ScienceDirect.com
- 3Teleportation breakthrough paves the way for quantum internet
As Hanson explains: “The key feature of quantum teleportation is that the quantum information its...
- 4Qubit teleportation between non-neighbouring nodes ... - Nature
Future quantum internet applications will derive their power from the ability to share quantum in...
- 5Quantum teleportation with one classical bit | Scientific Reports
Quantum teleportation is a strikingly curious quantum phenomenon with myriads of applications ran...