Quantum teleportation with one classical bit | Scientific Reports

文章推薦指數: 80 %
投票人數:10人

Quantum teleportation is a strikingly curious quantum phenomenon with myriads of applications ranging from secure quantum communication to ... Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature scientificreports articles article Quantumteleportationwithoneclassicalbit DownloadPDF DownloadPDF Subjects ComputerscienceInformationtechnologyQuantumphysics AbstractQuantumteleportationallowsonetotransmitanarbitraryqubitfrompointAtopointBusingapairof(pre-shared)entangledqubitsandclassicalbitsofinformation.Theconventionalprotocolforteleportationusestwobitsofclassicalinformationandassumesthatthesenderhasaccesstoonlyonecopyofthearbitraryqubittobe sent.Here,weaskwhetherwecandobetterthantwobitsofclassicalinformationifthesenderhasaccesstomultiplecopiesofthequbittobeteleported.Weplacenorestrictionsonthequbitstates.Consequently,weproposeamodifiedquantumteleportationprotocolthatallowsAlicetoresetthestateoftheentangledpairtoitsinitialstateusingonlylocaloperations.Asaresult,theproposedteleportationprotocolrequiresthetransmissionofonlyoneclassicalbitwithaprobabilitygreaterthanone-half.Thishasimplicationsforefficientquantumcommunicationsandthe securityofquantumcryptographicprotocolsbasedonquantumentanglement. IntroductionQuantumteleportation1,2isastrikinglycuriousquantumphenomenonwithmyriadsofapplicationsrangingfromsecurequantumcommunicationtodistributedquantumcomputing3,4,5,6,7.FirstpresentedbyBennettetal.1,quantumteleportationallowsonetorecreateanarbitraryqubitfromjusttwobitsofclassicalinformation.Thepreconditionisthatthetwocommunicatingpartiesshareanentangledpairofqubits.Entanglement,essentially,transmitstherawvaluesofamplitudespresentinthearbitraryqubitandtheclassicalbitsprovideafinal“correction”tothesevalues.Quantumteleportationhasproventobeaninvaluabletoolinquantuminformationscience8,9,10.Quantumteleportationenablesthedevelopmentofquantumrepeaters3,11,apivotaltechnologyfortheestablishmentofquantumcommunicationnetworks12,andingeneraltheframeworkofquantumInternet.Quantumteleportationhasbeenimplementedinlabsettingusinganumberofdifferentresources13,14.Lastly,anumberofcryptographicprotocolsusesharedentangledqubitsandoperationsequivalenttoteleportationtoproducerandomnumbersandencryptionkeys15.Itisknownthat,givenapre-sharedBellpair,theteleportationofanunknownqubit,requiresthetransmissionoftwoclassicalbits1.Moregenerally,theteleportationofanN-staterequires2\(log_2N\)classicalbits16.This,however,assumesthatthesenderhasaccesstoonlyonecopyofthearbitraryunknownqubitthatsheisteleporting.Kakinvestigatedtheminimumnumberofclassicalbitsrequiredforteleportation17.Inturn,heproposedthreevariationsonBennett’sprotocolthatrequiredfewerthantwoqubits.Twoofthesevariations,however,useanon-traditionalsetupwheretheentangledqubitsarenotpre-sharedbetweenthecommunicatingpartiesbuttransmittedalongwiththeclassicalbitsofinformation.Thischangeinthesetupcanbelookeduponasanencryptionsystemwheretheclassicalbitofinformationactsastheencryptionkeyforthequbitandmultipathroutingcanbeusedfortheirtransmission.Fromtheviewpointofteleportation,nevertheless,ifthequbitsaretobetransmittedalongwithclassicalbits,thenonecouldtransmitthearbitraryqubitdirectlyatthattimewithouttheneedtoresortingtoteleportation.However,itdoespointouttothepossibilityofsome“non-standard”settingofquantumteleportationhavinglowerclassicalcostofcommunication.Onesuch“non-standard”settingwasinvestigatedbyPati18wheretheteleportedqubitarosefromaspecificportionoftheBlochsphereleadingtoaone-bitclassicalcommunicationcost.ThiswasfurtherinvestigatedbyLoasremotestatepreparation19.Inthispaper,wetooconsiderasomewhatnon-standardsettingbutintermsofresources.Likethetraditionalteleportationprotocol,weassumethatthecommunicatingpartiespre-shareentangledqubits.However,weconsiderthecasewhenthesenderhasmorethanonecopyofan(unknown)arbitraryqubit\(\left|{\phi}\right\rangle=a\left|{0}\right\rangle+b\left|{1}\right\rangle\),\(|a|^2+|b|^2=1\).Wedonotplaceanyotherrestrictionsonthequbits.Suchapossibilityhasnotbeeninvestigatedbefore.Ourresultshowsthatundersuchassetting,wecandobetterthantwoclassicalbitsofcommunication.Asendermayhavemultiplecopiesofthequbittobeteleportedinmanypracticalsituationswheretheunknownqubitiseithertheresultofaperiodicoron-demandnaturalprocessoroutputofaquantumalgorithm.Onemayneedtosendthis(unmeasured)outputtothereceiverforfurtherprocessing.Weshowthattheteleportationofsuchaqubitrequiresthetransmissionofonlyoneclassicalbitwithaprobabilitygreaterthanone-half.Inordertodoso,weproposearesetprocedurethatallowsfortherecreationoftheoriginalsharedBellstateusingonlylocaloperationsatthesender’sendandnoconsumptionofresourcesatreceiver’send.Intheproposedresetprocedure,aswithconventionalteleportationprotocol,webeginwithmaximallyentangledqubits.Atthefirststageoftheprotocol,ifthismaximallyentangledqubitentersintoadesiredstatewemoveontothesecondstageoftheprotocol.If,ontheotherhand,theentangledpartendsupinanundesiredstateweresetitbacktotheoriginalstateusingonlylocaloperationsatthesender’send.Thecostofdoingsoisonecopyofthearbitraryqubit,\(\left|{\phi}\right\rangle\).Furthermore,iftheamplitudesaandbareknownand/orthequbit,\(\left|{\phi}\right\rangle\),generatedondemand,thentheresetoperationmaybeattemptedmanytimesover.Theresultpresentedinthispaper,webelieve,representsafundamentaladvanceintheclassicalburdenofteleportation,sinceitwasproposedbyBennettetal.1,becausewedonotrestrictthestatesofthequbitandallowthepartiestopre-shareentangledpairsasinthetraditionalsetting.Thepresentedresultalsohaswidespreadconsequencesforquantumcryptographicprotocolsthatuseentangledpairsandassumeasymmetricpowerbetweencommunicatingparties.ResultItisusefultothinkoftheconventionalteleportationprotocolasatwostagesystem19.WestartwithasharedBellpair\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\)betweensender,Alice,andreceiver,Bob.Thefirststageoftheteleportationprotocolintroducestheamplitudesaandbintotheentangledpair.However,thelocationsoftheamplitudesmaybeflippedandiscorrectedwiththeapplicationofPauliXgatebyboththesenderandthereceiver.Thisrequiresthetransmissionof1-bitofclassicalinformationtoBob.Inthesecondstageoftheprotocol,AliceterminatestheentanglementbymeasuringherqubitoftheBellpairintheHadamardbasis.ThisintroducesanotherundesirableerrorintothestateofthequbitthatBobholdscorrespondingtothePauliZgate.ThisiscorrectedbythetransmissionofanotherclassicalbitofinformationtoBob.Tobemoreprecise,inBennett’sprotocol1attheendofthefirststagethetwopartiessharethestate\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\)or\(b\left|{00}\right\rangle+a\left|{11}\right\rangle\).Thefirstofthesestatesisdesirableandthesecondoneisconvertedtothefirstonewiththeapplicationofabi-localunitarytransformation\(\left|{0}\right\rangle\rightarrow\left|{1}\right\rangle\).ThisrequiresonebittobesenttoBob.Inthesecondstageoftheprotocol,Bobendsupwith\(a\left|{0}\right\rangle+b\left|{1}\right\rangle\)or\(a\left|{0}\right\rangle-b\left|{1}\right\rangle\).ThecorrectionofthelaststaterequirestheotherbitofinformationtobesenttoBob.IntheendBobisleftwith\(a\left|{0}\right\rangle+b\left|{1}\right\rangle\),whichcorrespondstotheunknownstate\(\left|{\phi}\right\rangle\)thatAlicewantedtoteleport.Inthispaper,weaskasimplequestion:ifAliceendsupintheundesiredstateattheendofthefirststage,i.e.\(b\left|{00}\right\rangle+a\left|{11}\right\rangle\),cansheusingonlylocaltransformationsresetthestateofthesharedentanglementtotheoriginalstate\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\)?Ifso,shecanreattempttheteleportationprotocol.ResettingtheentangledstateInordertoresettheentangledstate,Aliceintroducesanancillaryqubit\(\left|{\theta}\right\rangle=c\left|{0}\right\rangle+d\left|{1}\right\rangle\)intothesystem.Itwill becomeapparentthroughthefollowingdiscussionthat\(\left|{\theta}\right\rangle=\left|{\phi}\right\rangle\).Theresultingsystemstateisgivenby\(\left|{\psi}\right\rangle\),$$\begin{aligned}\begin{aligned}\left|{\psi}\right\rangle&=\left|{\theta}\right\rangle\left(a\left|{1_A1_B}\right\rangle+b\left|{0_A0_B}\right\rangle\right)\\&=\left(c\left|{0_l}\right\rangle+d\left|{1_l}\right\rangle\right)\left(a\left|{1_A1_B}\right\rangle+b\left|{0_A0_B}\right\rangle\right)\\&=ca\left|{0_l1_A1_B}\right\rangle+cb\left|{0_l0_A0_B}\right\rangle+da\left|{1_l1_A1_B}\right\rangle+db\left|{1_l0_A0_B}\right\rangle\end{aligned}\end{aligned}$$ (1) QubitswithsubscriptslandAarewithAliceandthequbitdenotedbysubscriptBiswithBob.Now,AliceappliesCNOTwiththeancillaryqubit(thefirstqubit)asthecontrolqubitandsecondqubitasthetargetqubit.Thestatethenbecomes,$$\begin{aligned}\begin{aligned}\left|{\psi}\right\rangle&=ca\left|{0_l1_A1_B}\right\rangle+cb\left|{0_l0_A0_B}\right\rangle+da\left|{1_l0_A1_B}\right\rangle+db\left|{1_l1_A0_B}\right\rangle\\&=\left|{1_A}\right\rangle\left(ca\left|{0_l1_B}\right\rangle+db\left|{1_l0_B}\right\rangle\right)+\left|{0_A}\right\rangle\left(cb\left|{0_l0_B}\right\rangle+da\left|{1_l1_B}\right\rangle\right)\end{aligned}\end{aligned}$$ (2) InEq. (2)above,wehaveremovedthesecondqubitasthecommonqubitforsimplificationoftheexpression.Weseethat\(\left|{0_A}\right\rangle(cb\left|{0_l0_B}\right\rangle+da\left|{1_l1_B}\right\rangle)\)isclosesttothedesiredstate\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\).Ifweset\(c=a\)and\(d=b\)thenweget,$$\begin{aligned}\left|{\psi}\right\rangle=\left|{1_A}\right\rangle\left(aa\left|{0_l1_B}\right\rangle+bb\left|{1_l0_B}\right\rangle\right)+\left|{0_A}\right\rangle\left(ab\left|{0_l0_B}\right\rangle+ba\left|{1_l1_B}\right\rangle\right)\end{aligned}$$ (3) Alicenowmeasuresthesecondqubit.Shewillsee\(\left|{0}\right\rangle\)withprobability\(2|ab|^2\)andthesharedentangledqubitsendupinstate\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\).ThisconstitutesasuccessfulresetbyAlice.Notethat,setting\(c=a\)and\(d=b\)meansthatAliceissimplyusingacopyoftheoriginalqubit\(\left|{\phi}\right\rangle\)fortheresetoperationanddoesnotneedtocreateanynewspecialancillaryqubits.OncearesettotheoriginalBellstateisachieved,Alicereinitiatestheteleportationprotocolusingafreshcopyof\(\left|{\phi}\right\rangle\).Ontheotherhand,Alice’smeasurementresultsin\(\left|{1}\right\rangle\)withprobability\(|a^2|^2+|b^2|^2\).Thistakesthesystemto thestate\(\frac{a^2\left|{01}\right\rangle+b^2\left|{10}\right\rangle}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\).AlicecanapplytheXgatetoherqubitandreattempttheresetoperationwith\(\frac{a^2}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\)and\(\frac{b^2}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\)asthenewaandbvalues,respectively.Atthispoint,Alicehasconsumedtwocopiesof\(\left|{\phi}\right\rangle\).Oneduringstageoneoftheteleportationprotocolandsecondastheancillaryqubitintroducedintothesystemduringtheresetoperation.Figure 1showsthebranchesthatateleportationattemptwiththeproposedresetprocedurecanfollow.Figure1DecisiontreeatAlice’sendforteleportationwiththeproposedresetoperation.Probabilitiesareshownalongthearmsbetweenthenodes.StatesintheredboxesresidewithBob.FullsizeimageDiscussionTheprobabilityofsuccessoftheresetattemptsvarywiththevaluesofamplitudesaandb,inthestate\(\left|{\phi}\right\rangle\),andisgivenby\(2|ab|^2\)forthefirstresetattempt.Since,\(|ab|^2=|a|^2|b|^2=|a|^2(1-|a|^2)=|a|^2-|a|^4\)and\(0\le|a|^2\le1\),weget\(|ab|^2\le\frac{1}{4}\)and\(2|ab|^2\le\frac{1}{2}\).Forexample,when\(a=\frac{i}{\sqrt{2}}\)and\(b=\frac{1}{2}+\frac{i}{2}\),theprobabilitythatthefirstresetattemptwillsucceedis\(\frac{1}{2}\).Afterasuccessfulreset,Alicemakesasecondattempttoteleportthequbit.Theprobabilitythatentangledqubitswillcollapseintothedesirablestate(\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\))isagain\(\frac{1}{2}\).Therefore,withprobability\(\frac{1}{2}+\frac{1}{4}\)Alicewouldtransmitjustonebitforteleportationbutmusthaveatleastthreecopiesof\(\left|{\phi}\right\rangle\)atherdisposal.Remarkably,thequbit\(\left|{\phi}\right\rangle\)remainsunknownandarbitrary.Consequently,ingeneral,consideringonlythefirstresetattemptandanunknownqubit\(\left|{\phi}\right\rangle\)theprobabilityofendingupinthedesiredstate(\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\)),thatisasuccessfulteleportationwithonlyone-classicalbit,is\(\frac{1}{2}+\frac{1}{2}\cdot2|ab|^2=\frac{1}{2}+|ab|^2\).Note,thisprobabilityisalwayssetto\(\frac{1}{2}\)inBennettetal.’squantumteleportation1protocolwhichalwaysrequirestwobitsofinformationtobetransmitted.Alice,however,doesrequirethevaluesofaandbfortheresetattemptsbeyondthefirstone;inthecaseofaresetfailure.Thislattercaseisusefulwhentheprecisionrequiredforclassicalrepresentationoftheaandbvaluesexceedstheavailablebandwidthorresourcesavailableontheclassicalchannel.Inotherwords,ifthevaluesofaandbareknown,Alicecanpursuetheresetattemptsuntilitsucceeds.Notethatoncearesetattemptsucceeds,theprobabilitythatwewillendupinthedesiredentangledstateisagain\(\frac{1}{2}\).Therefore,theexpectednumberofattempts,givenasuccessfulreset,is2.Theresetprocedurepresentedabove,whensuccessful,reducestheteleportationprotocoltoonestageprotocolunderthestandardsettingofpre-sharedBellstates.Furthermore,Aliceknowsateachstagewhethertheresethassucceededornot.Intheworstcase,ifthevaluesofaandbarenotknownandtheresetfails,shecanabandonthatparticularpairofentangledqubitsanduseanother.Thecomputationalburdenofteleportationwithresetcanthenbestatedas,$$\begin{aligned}H(T)=\left[\left(\frac{1}{2}+|ab|^2\right)(1)+\left(\frac{1}{2}-|ab|^2\right)(2)\right]\text{bits}\end{aligned}$$ (4) Itiseasytoseethat\(1.25\leH(T)\le1.5\)dependingonthevaluesofaandb.Forcomparison,oneoftheprotocolsbyKak17reducesthecomputationalburdento1.5bitswhentheBellstatesarepre-shared.Thecostofreducingthecomputationalburdento1.25bits,therefore,istheexpenditureofextracopiesoftheunknownqubit\(\left|{\phi}\right\rangle\).Inotherwords,theprobability\(\frac{1}{2}+|ab|^2\)onlyrepresentstheaveragecase.GiventhattheproposedprotocolisprobabilisticinnatureandifAlicehasseveralqubitstoteleport,shemayendupwithasituationwhereallherresetattemptsmaysucceedresultingina1bitperqubitforteleportationevenforacompletelyarbitraryunknownqubit!OnemayarguethateveninBennett’soriginalteleportationprotocol1,AliceandBobmayagreeonaschemesuchasthefollows:ifstageoneoftheprotocolsucceedsincreating\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\)thentheywillproceedwithstagetwoandifstageoneresultsin\(a\left|{11}\right\rangle+b\left|{00}\right\rangle\),theywillabandontheentangledpair.Suchamodificationwouldalsobeprobabilisticandresultin1bitperqubitforteleportation.However,wepointoutthattheprobabilityof1bitperqubitinsuchamodifiedBennett’sprotocolwouldbestuckat\(\frac{1}{2}\).Whereas,ourresetprocedureallowsthisprobabilitytobe\(\frac{1}{2}+|ab|^2\)whichisgreaterthan\(\frac{1}{2}\)forallpracticalpurposes.Theprobabilityofsuccessfortheresetoperationateveryattemptchangeswiththeamplitudesaandbandisgivenbyarecursiverelationship.If\(R_0,R_1,R_2,\ldots\)representsuccessiveresetattemptsthentheprobabilityofsuccessofeachresetisgivenby,$$\begin{aligned}\begin{aligned}P(R_0)&=2|ab|^2\\P(R_1)&=2|a_1b_1|^2\text{where}a_1=\frac{a^2}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\text{and}b_1=\frac{b^2}{\sqrt{\left|{a^2}\right|^2+\left|{b^2}\right|^2}}\\P(R_2)&=2|a_2b_2|^2\text{where}a_2=\frac{a_1^2}{\sqrt{\left|{{a_1^2}}\right|^2+\left|{{b_1^2}}\right|^2}}\text{and}b_2=\frac{b_1^2}{\sqrt{\left|{{a_1^2}}\right|^2+\left|{{b_1^2}}\right|^2}}\\&\quad\text{and}\text{so}\text{on.}\end{aligned}\end{aligned}$$ (5) Therefore,theprobabilitythatAlicewouldneedthreeresetattemptsisgivenby\((1-P(R_0))(1-P(R_1))P(R_2)\).Forastatesuchas\(\frac{\left|{0}\right\rangle+\left|{1}\right\rangle}{\sqrt{2}}\)thiswouldbe\((1-\frac{1}{2})(1-\frac{1}{2})(\frac{1}{2})=\frac{1}{8}\).AnimportantimplicationofEq. (4)isthatwhen\(|ab|^2>0\)thereisanon-zeroprobabilityofasuccessfulreset.Theequality,\(|ab|^2=0\),holdsonlywhenoneoftheamplitudesaorb=0,acornercase.Asaresult,theaboveprotocolbreaksthesymmetrybetweenthefourcasesoftheconventionalteleportationprotocol1.Moreprecisely,intheconventionalteleportationprotocol,thereisanequalprobabilityforBobtoendupinanyofthefourstates:\(\left|{\phi_0}\right\rangle=a\left|{0}\right\rangle+b\left|{1}\right\rangle\),\(\left|{\phi_1}\right\rangle=a\left|{0}\right\rangle-b\left|{1}\right\rangle\),\(\left|{\phi_2}\right\rangle=b\left|{0}\right\rangle+a\left|{1}\right\rangle\),and\(\left|{\phi_3}\right\rangle=b\left|{0}\right\rangle-a\left|{1}\right\rangle\).Consequently,twoclassicalbitswereneededforteleportation.However,withtheproposedresetoperationtherelationshipbetweentheprobabilitiesofthestatesthatBobseesisgivenby,$$\begin{aligned}P\left(\left|{\phi_0}\right\rangle\right)+P\left(\left|{\phi_1}\right\rangle\right)>P\left(\left|{\phi_2}\right\rangle\right)+P\left(\left|{\phi_3}\right\rangle\right)\end{aligned}$$ (6) Foramomentonlyconsiderthefirststageoftheteleportationprotocolandtheresetoperation.AssumethatAlicehasnottransmittedanyinformationtoBob.Weseethat,theresetoperationalsoimpliesthatwhen\(a,b\ne0\),Alicecanunilaterallyforcethesharedentanglement,\(\frac{\left|{00}\right\rangle+\left|{11}\right\rangle}{\sqrt{2}}\)tobeconvertedto\(a\left|{00}\right\rangle+b\left|{11}\right\rangle\)withaprobabilityhigherthan\(\frac{1}{2}\)andnocommunicationwithBob.Ifthequbit\(\left|{\phi}\right\rangle\)isdeliberatelyconstructedbyAliceandtheinformationAlicewantstotransmitisencodedinthevaluesofaandbratherthanthephasedifferencebetweenthem,thenAlicehassuccessfullyinducedabiasinBob’squbit.Theabilityofonepartyto,unilaterally,induceabiasinasharedentangledpairgivesapartywantingtocheat,inacryptographicprotocol,anadvantage.Forexample,severalquantumkeyagreementprotocolshavebeenproposedinliterature20,21,22,23,24,25.Theseprotocolsaredesignedsuchthatboththecommunicatingpartiesmakeequalcontributiontothefinalagreedkey.ThisisincontrasttotraditionalquantumkeydistributionprotocolssuchasBB84whereonepartydeterminestheentirekeyandsecurelydistributesittotheotherparty.Ifthequantumkeyagreementprotocolisbasedonentanglementthenoneofthecheatingpartiescaninduceabiasinthefinalkeystreambyintroducinganappropriate\(\left|{\phi}\right\rangle\)inthesystem.ThesimplestexampleofaweakquantumkeyagreementprotocolistheE91protocolwherebothpartiesmakerandommeasurementsonmaximallyentangledpairsofqubits.IfthesemaximallyentangledpairsaredistributedbyacentralauthoritythenAlice(cheatingparty)canintroduce\(\left|{\phi}\right\rangle=a\left|{0}\right\rangle+b\left|{1}\right\rangle\)suchthat\(|a|^2\neq|b|^2\)resultinginabiasedmeasurementresult,atBob’send,ofherownchoosing.Therefore,theasymmetrycausedbytheresetoperationgivesAlicemorepowerthanBobandisdevastatingforcryptographicprotocolsthatuseentanglementandrelyonthepowersofthecommunicatingpartiesbeingsymmetricforsecurity.Inthispaper,wehaveonlyconsideredtheidealcasewherethesharedentangledpairismaximallyentangled.Investigationintohowtheresetprocedurewouldproceedinthecaseofnon-maximallyentangledstates,mixedstates,non-idealmeasurementsandchannelerrorsareleftasfuturework.Entanglementdistillation26couldbeusedtomitigatetheeffectsofthesenon-idealcases. ReferencesBennett,C.H.etal.TeleportinganunknownquantumstateviadualclassicalandEinstein-Podolsky-Rosenchannels.Phys.Rev.Lett.70,1895–1899.https://doi.org/10.1103/PhysRevLett.70.1895(1993).ADS  MathSciNet  CAS  Article  PubMed  MATH  GoogleScholar  Gauthier,D.J.SuperluminalCommunicationinQuantumMechanics766–769(Springer,2009).https://doi.org/10.1007/978-3-540-70626-7_217.Book  GoogleScholar  Briegel,H.-J.,Dür,W.,Cirac,J.I.&Zoller,P.Quantumrepeaters:Theroleofimperfectlocaloperationsinquantumcommunication.Phys.Rev.Lett.81,5932–5935.https://doi.org/10.1103/PhysRevLett.81.5932(1998).ADS  CAS  Article  GoogleScholar  Gottesman,D.&Chuang,I.L.Demonstratingtheviabilityofuniversalquantumcomputationusingteleportationandsingle-qubitoperations.Nature402,390–393(1999).ADS  CAS  Article  GoogleScholar  Raussendorf,R.&Briegel,H.J.Aone-wayquantumcomputer.Phys.Rev.Lett.86,5188–5191.https://doi.org/10.1103/PhysRevLett.86.5188(2001).ADS  CAS  Article  PubMed  GoogleScholar  Kimble,H.J.Thequantuminternet.Nature453,1023–1030(2008).ADS  CAS  Article  GoogleScholar  Gottesman,D.&Chuang,I.L.Demonstratingtheviabilityofuniversalquantumcomputationusingteleportationandsingle-qubitoperations.Nature402,390–393.https://doi.org/10.1038/46503(1999).ADS  CAS  Article  GoogleScholar  Weedbrook,C.etal.Gaussianquantuminformation.Rev.Mod.Phys.84,621–669.https://doi.org/10.1103/RevModPhys.84.621(2012).ADS  Article  GoogleScholar  Braunstein,S.L.&vanLoock,P.Quantuminformationwithcontinuousvariables.Rev.Mod.Phys.77,513–577.https://doi.org/10.1103/RevModPhys.77.513(2005).ADS  MathSciNet  Article  MATH  GoogleScholar  Wilde,M.M.QuantumInformationTheory2ndedn.(CambridgeUniversityPress,2017).Book  GoogleScholar  Ghalaii,M.&Pirandola,S.Capacity-approachingquantumrepeatersforquantumcommunications.Phys.Rev.A102,062412.https://doi.org/10.1103/PhysRevA.102.062412(2020).ADS  MathSciNet  CAS  Article  GoogleScholar  Stephen Binkley,J.,Carl Williams,S. J.&Tahan,C.Acoordinatedapproachtoquantumnetworkingresearch.https://www.quantum.gov/wp-content/uploads/2021/01/A-Coordinated-Approach-to-Quantum-Networking.pdf(2021).Llewellyn,D.etal.Chip-to-chipquantumteleportationandmulti-photonentanglementinsilicon.Nat.Phys.16,148–153.https://doi.org/10.1038/s41567-019-0727-x(2020).CAS  Article  GoogleScholar  Khatri,S.,Brady,A.J.,Desporte,R.A.,Bart,M.P.&Dowling,J.P.Spookyactionataglobaldistance:Analysisofspace-basedentanglementdistributionforthequantuminternet.npjQuantumInf.7,4.https://doi.org/10.1038/s41534-020-00327-5(2021).ADS  Article  GoogleScholar  Shenoy-Hejamadi,A.,Pathak,A.&Radhakrishna,S.Quantumcryptography:Keydistributionandbeyond.Quanta6,1–47(2017).MathSciNet  Article  GoogleScholar  Chau,H. F.&Lo,H.-K.Howmuchdoesitcosttoteleport?In4thWorkshoponPhysicsandComputation(PhysComp96)(1996).arXiv:quant-ph/9605025.Kak,S. C.Teleportationprotocolsrequiringonlyoneclassicalbit.arXiv(2003).arXiv:quant-ph/0305085.Pati,A.K.Minimumclassicalbitforremotepreparationandmeasurementofaqubit.Phys.Rev.A63,014302.https://doi.org/10.1103/PhysRevA.63.014302(2000).ADS  Article  GoogleScholar  Lo,H.-K.Classical-communicationcostindistributedquantum-informationprocessing:Ageneralizationofquantum-communicationcomplexity.Phys.Rev.A62,012313.https://doi.org/10.1103/PhysRevA.62.012313(2000).ADS  Article  GoogleScholar  Zhou,N.Quantumkeyagreementprotocol.Electron.Lett.40,1149–1150(2004).ADS  Article  GoogleScholar  Cao,H.&Ma,W.Multipartyquantumkeyagreementbasedonquantumsearchalgorithm.Sci.Rep.7,45046(2017).ADS  CAS  Article  GoogleScholar  Yin,X.,Ma,W.&Liu,W.Y.Three-partyquantumkeyagreementwithtwo-photonentanglement.Int.J.Theor.Phys.52,3915–3921(2013).MathSciNet  Article  GoogleScholar  Huang,W.-C.,Yang,Y.-K.,Jiang,D.&Chen,L.Efficienttravelling-modequantumkeyagreementagainstparticipant’sattacks.Sci.Rep.9,16421(2019).ADS  Article  GoogleScholar  Chong,S.-K.,Tsai,C.-W.&Hwang,T.Improvementon“quantumkeyagreementprotocolwithmaximallyentangledstates’’.Int.J.Theor.Phys.50,1793–1802(2011).Article  GoogleScholar  Shi,R.-H.&Zhong,H.Multi-partyquantumkeyagreementwithbellstatesandbellmeasurements.QuantumInf.Process.12,921–932(2013).ADS  MathSciNet  Article  GoogleScholar  Bennett,C.H.,Bernstein,H.J.,Popescu,S.&Schumacher,B.Concentratingpartialentanglementbylocaloperations.Phys.Rev.A53,2046–2052.https://doi.org/10.1103/PhysRevA.53.2046(1996).ADS  CAS  Article  PubMed  GoogleScholar  DownloadreferencesAuthorinformationAuthorsandAffiliationsUniversityofNebraska,Omaha,NE,68116,USAAbhishekParakhAuthorsAbhishekParakhViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsIamthesoleauthorofthepaper.CorrespondingauthorCorrespondenceto AbhishekParakh.Ethicsdeclarations Competinginterests Theauthorsdeclarenocompetinginterests. AdditionalinformationPublisher'snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.Rightsandpermissions OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicence,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicence,visithttp://creativecommons.org/licenses/by/4.0/. ReprintsandPermissionsAboutthisarticleCitethisarticleParakh,A.Quantumteleportationwithoneclassicalbit. SciRep12,3392(2022).https://doi.org/10.1038/s41598-022-06853-wDownloadcitationReceived:21October2021Accepted:07February2022Published:01March2022DOI:https://doi.org/10.1038/s41598-022-06853-wSharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative CommentsBysubmittingacommentyouagreetoabidebyourTermsandCommunityGuidelines.Ifyoufindsomethingabusiveorthatdoesnotcomplywithourtermsorguidelinespleaseflagitasinappropriate. DownloadPDF Advertisement Explorecontent Researcharticles News&Comment Collections Subjects FollowusonFacebook FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal AboutScientificReports Journalpolicies Guidetoreferees Contact CallsforPapers Editor'sChoice GuestEditedCollections ScientificReportsTop1002019 ScientificReportsTop1002018 ScientificReportsTop102018 ScientificReportsTop1002017 EditorialBoardHighlights AuthorHighlights Announcements 10thAnniversaryEditorialBoardInterviews ScientificReportsTop1002020 ScientificReportsTop1002021 Publishwithus Forauthors Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing



請為這篇文章評分?