Omissions in the synthetic theory of evolution - SciELO Chile
文章推薦指數: 80 %
The synthetic theory of evolution is considered the most unifying theory of life science. This theory is mainly based on neo-Darwinism, particularly on ... ServiciosPersonalizados Revista SciELOAnalytics GoogleScholarH5M5() Articulo Inglés(pdf) ArticuloenXML Comocitaresteartículo SciELOAnalytics Traducciónautomática Indicadores CitadoporSciELO Accesos Linksrelacionados CitadoporGoogle Similaresen SciELO SimilaresenGoogle Compartir Otros Otros Permalink BiologicalResearch versión impresa ISSN0716-9760 Biol.Res. v.43 n.3 Santiago 2010 http://dx.doi.org/10.4067/S0716-97602010000300006 BiolRes43:299-306,2010ARTICLESOmissionsinthesynthetictheoryofevolution DanielFríasL.InstitutodeEntomología,UniversidadMetropolitanadeCienciasdelaEducación,CódigoPostal7760197,Santiago.Chile,E-mail:daniel.frias@umce.clABSTRACTTheSyntheticTheoryofEvolutionisthemostunifyingtheoryoflifescience.Thistheoryhasdominatedscientificthoughtinexplainingthemechanismsinvolvedinspeciation.However,therearesomeomissionsthathavedelayedtheunderstandingofsomeaspectsofthemechanismsoforganicevolution,principally:1)thebridgebetweensomaticandgerminalcells,especiallyinsomephylumofinvertebratesandvertebrates;2)horizontalgenetictransferencesandtheimportanceofvirusesinhostadaptationandevolution;3)theroleofnon-codingDNAandnon-transcriptionalgenes;4)homeoticevolutionandthelimitationsofgradualevolution;and5)excessiveemphasisonextrinsicbarrierstoanimalspeciation.Thispaperreviewseachofthesetopicsinanefforttocontributetoabettercomprehensionoforganicevolution.Molecularfindingssuggesttheneedforanewevolutionarysynthesis.Keyterms:Evolution,non-transcriptionalgenes,viruses,homeosis,epigénesis,imprinting,neo-Lamarckism,sympatricspeciation. INTRODUCTIONThesynthetictheoryofevolutionisconsideredthemostunifyingtheoryoflifescience.Thistheoryismainlybasedonneo-Darwinism,particularlyonMendelism,populationgenetics,mutations,naturalselection,gradualism,andthecentraldogmaofmolecularbiology.Thesearekeytopicstoexplaingenomechanges,speciationphenomena,andbiodiversity.Neo-DarwinismrootsarefoundinAugustWeissmann'stheoryofcontinuityofthegermplasm.Weismannestablishedthatorganismshavetwosetsofcells:somatoplasmandgermplasm.Inthelatter,thereareparticlesorbiospheresassociatedwithchromosomesresponsibleforthetransmissionofinheritedcharacters.Thus,Weismannlaidthefoundationsofchromosometheoryofinheritance.HerejectedLamarck'stheoryofacquiredcharacteristics,andchallengedalltheseideasofthenaturalselectiontheoryofCharlesDarwin.Thus,Neo-Darwinismemerged,byaddingWeismann'stheoryofthecontinuityofgermplasm(East,1929;Darlington,1937).TherediscoveryoftheprinciplesofMendelbyHugodeVries,CarlCorrensandErichVonTschermakstrengthenedNeo-Darwinism,andwiththecontributionsofFisher,Wright,Haldane,Dobzhasky,Mayr,Simpson,StebbinsandHuxley,"PopulationGenetics"and"TheSyntheticTheoryofEvolution"emerged.Sinceitsorigins,thistheoryhasdominatedthemindsandthoughtsofscientistsinexplainingthemechanismsinvolvedinthephenomenonofspeciation.However,importantomissionshavepreventedafullunderstandingoftheprocessesinvolvedinorganicevolution.Especially,thereislittleconsiderationregarding:1)thelackofabridgebetweensomaticandgerminaleukaryotecells,2)lateralgenetictransferencesperformedbyplasmidsandvirusesinthegenomeofeukaryotes,3)thelackofaholisticconceptofthegene,determinism,andgeneticreductionism,4)non-codingDNA,5)epigénesis,6)homeoticmutationsandthegeneticsofdevelopment,and7)sympatricspeciation.Thegoalofthisarticleistodiscussthesetopicstocontributetoabetterunderstandingofthemechanismsinvolvedinorganicevolution.TheabsenceofabridgebetweensomaticandgerminalcellsinsomephylumofinvertebratesandtheheredityofsomatoclonalvariationOneoftheassumptionsofpopulationgeneticsisthatgenesareverticallytransmittedtotheprogenyaccordingtothelawsofMendelianinheritance.Inthiscontext,andbasedonWeissmann'sbarriersbetweensomaticandgerminalcells,onlygeneticchangesthattakeplacewithingametesareinheritedbythenextgeneration.Nevertheless,inmanyinvertebrateorganismstherearenobarriersbetweensomaticandgerminalcells.Forexample,inthephylumporifera(seasponges)andcoelenterata(medusa)therearenodifferentiatedgerminallines.Sexualspongecellsoriginatefromacellulargroupdenominatedchoanocytesandarchaeocyteamoeboidsthathaveseveralfunctions,suchasobtaining,digesting,andtransportingfood,besidessexualandasexualreproduction.InthephylumEchinoderms,thereisagermlinewithlatedifferentiationduringembryonicdevelopment(StorerandUsinger1966;RuppertandBarnes1996).Thus,changesinthegeneticmaterialofsomaticcellscouldbeinheritedinthenextgenerationunderaneo-Lamarckianmodelofhereditybynaturalsomatoclonalvariation.Somatoclonalselectionfrequentlyoccursnaturallyinangiospermsthroughrhizomes,tubers,andstems(Hoffmann,1998).Althoughweknowagreatdealaboutnaturalcloning,thereisstillmuchtolearnaboutvegetativepropagationanditsevolutionaryimplications.Duetogreatadvancesingeneticengineeringandbiotechnology,themeaningofgeneticchangeshasbeenverifiedwithsomatoclonalcellsandsomaticembryogenesisthroughplantimprovement(Ahuja,1988;Mohanetal.,1988).Inaddition,thisoccursinmanyprimitivephylumofinvertebrates,suchasporifera,coelenterata,platyhelminthes,nemertinea,andbryozoa,byalternatingsexualandasexualreproduction;eitherbycelldispersion,transversalexcision,orbudding.Neworganismsmayarisethroughalltheseprocesses(StorerandUsinger,1966,RuppertandBarnes,1996).Thereisagreatregenerativepowerexistinginsomeofthesespecies,forexampletheplanarian(Turbellarian);anypieceofabodymaydevelopintoanewentirebeing(Legneretal.,1976).InachapterentitledTheHeredityofAcquiredCharactersofhisbookTheScientificBasisofEvolution(1943),ThomasH.Morganstated:"Itisnotknownifthenewworkinthefieldofgeneticsisamortalblowtotheolddoctrineoftheinheritanceofacquiredcharacteristics.Theolddoctrineheldthatamodificationofthebody'scells,producedduringdevelopmentorinadultstagesbyexternalagents,isinherited.Inotherwords:achangeinthecharacterofthesomaticcelldeterminesachangeinthegermcells."Morganthengaveargumentstoprovethefallacyoftheinheritanceofacquiredcharacteristics,usingstableheritabletraitsinDrosophila.Undoubtedly,manysuchargumentsaresolidandindisputable,butgenomicsequencingshowsthatthegenomeofmanyeukaryoticorganismshaveretrovirusgenesthathavefirstlyparasitizedsomaticcells.AccordingtoSteeleetal.,(1998)thebarrierbetweensomaticandgermcellscanbesortedthroughretrovirusandcouldberesponsibleforpaternaltransmissionofacquiredimmunologicaltolerance.Horizontalgenetictransferencesandtheimportanceofvirusesinthehost'sadaptationandorganicevolutionIntheclassicmodelsofpopulationgeneticsandheredity,smalleffectmutationsarethemostimportantcauseofevolutionarynoveltybywhichnaturalselectionacts.WithMcClintock'sdiscoveryoftransposableelementsinmaize,themechanismofvariabilitybecamemorehorizontal.Mobileelementsregulategeneticaction(McClintock,1950,1951)andcouldalsohaveevolutionaryimplicationsthroughtheinductionofhybriddysgenesisandsympatricspeciation(Syvanen,1984).SalvadorLuriain1959postulatedthattemperatebacterialvirusesmightplayaroleintheevolutionofthehost(Villarreal,1999).StebbinsandAyala(1986)providednewdataandamodernreinterpretationinordertoexpandtheSyntheticTheoryofEvolution.Inthatpublicationtheseauthorsaid:"Whennewgenesarisebyduplication,boththeoriginalandtheduplicatedgeneshavethetendencytobetransmittedcoupledtotheoffspringoftheorganismwheretheduplicationwasproduced.However,avariantofthisprocesshasbeendiscoveredthatconstitutesoneoftheways,apparentlycountlessoftheevolutionatthegeneticlevel.Occasionally,thegeneisfoundinaspeciesandtheduplicatedgeneispresentinadistantphylogeneticspecies.ThisphenomenoniscalledhorizontaltransferofDNAasitpassesfromonespeciestoanotherandco-existingwithit.Thishorizontalgenetictransmissionisopposedtoverticaltransmissionfromparentstochildrenthroughgametes.Therealmechanismsforhorizontalgenetransferareunknown.Probably,thevectorcouldbesmallring-shapedchainsofDNAcalledplasmid,capableoftransportinghereditarymaterialfromonecelltoanother."Withtheadventofgeneticengineering,wenowknowthatplasmidsandvirusesarevectorsintheframeworkofrecombinantDNAtechnology.TheimpactoftheselateraltransferencesbetweenbacteriaandprimitiveeukaryotesonorganicevolutionhasbeendetectedinthenewtreeoflifedescribedbyCarlR.Woese(1998).Accordingtothisnewtree,therearethreedomains:bacteria,archaea,andeukarya.Uniqueverticaltransferofgenesamongthesedomainsisnotconsistent.Itwasexpectedthateukarya,withtheexceptionofmitochondriaandchloroplastgenes,shouldhaveonlygenesfromarchaea.However,thisisnotthecase,becauseeukaryotesoftenhavegenesfrombacterialoriginthatarenotrelateduniquelytorespirationandphotosynthesis(Doolittle,2004).Horizontalgenetransferhasbeendescribedindetailincasesofbacterialtransformationmediatedbyviruses(restrictedandgeneralizedtransduction).Bacteriahaveobtainedasignificantproportionoftheirgeneticdiversitythroughtheacquisitionofsequencesfromdistantlyrelatedorganisms.Theselateraltransfershaveeffectivelychangedtheecologicalandpathogeniccharacterofbacterialspecies(Ochman,etal,2000,Bardarov,2002).Thehumangenomeshowsevidencethatgeneswerelaterallytransferredintothegenomefromprokaryoticorganisms.About40to113geneshavebeenfoundtobeexclusivelysharedbyhumansandbacteriaandareexamplesofadirecthorizontaltransferfrombacteriatothehumangenome(Salzbergetal.,2001,Villarreal2001).Inaddition,manytransposableelementsinthehumangenome,suchasLINES,SINES(longandshortinterspersedsequences),areclearlyrelatedtoendogenousretroviruses(ERV)embeddedinthehostgenome.Aswell,someDNApolymerasesfromeukaryoteshaveaviralorigin(Villarreal,2000,Villarreal2001).Humanchromosome21carries225protein-encodinggenes,butalsocarries2000ERVelements.About5%ofthehumangenomecontainsretroviralandrelatedsequences,similartoproportionsexhibitedbyotherspecies(PrakandKazazian,2000;Tristem,2000),whilealowerproportionofhuman,genome(about2%)containstructuralgenes.Aspartofthehostgeneticheritage,ERVaretransmissibletothenextgenerationinaMendelianmodel.Theirabundanceinanimalgenomesandtheirexpressioninprimarilygermcells,embryonictissueandcancercelllinesraisedthequestionoftheirbiologicalsignificance(Prudhommeetal.,2005).ThepresenceofERVinhumansandintheplacentaofothermammalshasbeenknownforthepast25years,butthesignificanceofthisobservationisstillnotfullyunderstood.ItisprobablythatancienttrophoblasticERVshadaroleintheevolutionanddivergenceofallplacentalmammals(Harris,1998).AllmammaliangenomeshavespecificanddistinctsetsofERVsandmuchgreaternumbersofdefectiveretroviralderivatives,suggestingthatmammaliangenomeswerecolonizedbyspecificlineagesofERVsoonafterplacentalspeciesradiatedfromoneanother.ThehumangenomeprojectindicatesthattherearethousandsofhumanERVsthatseemtocomprise24families.HumanshavebothancientandnewlyacquiredversionsofERVs,whichdistinguisheshumansfromcloseprimaterelatives.MammalsarephylogeneticallycongruentwiththeirERVs,whereasbirdsarenot.MostmammalsexpresstheircorrespondingERVsinplacentalandembryonictissues.Thisexpressionisneeded,possiblyforimmunesuppressionandothervitaldevelopmentalprocesses.ERVformspartoftheplacentalimmunosuppressivebarrierbetweenmotherandfetus,andtheirexpressionpreventstherejectionofthefetusbythematernalimmunesystem.Thishassolvedamajorproblemoflivebirth(viviparous)placentalmammals.Itcouldalsoplayaroleintheoriginofadaptiveimmunesystemsinanimals(Venableet.al,1995,Villarreal,1997,1999,2001,2003;Prudhomme,etal.2005).Therefore,theseERVviruseshaveasymbioticrelationshipwiththehost.AsimilarexampleofERVhasbeendescribedinDNAvirusesofparasiticwasps.MutualisticrelationshipswithpolydnavirushavebeendescribedinthefamiliesBraconidaeandIchneuminidae.TheDNAvirusisintegratedintotheparasitoidwasphostgenomeandseemstobethefirstdocumentedexampleofanintegrated,nonretroviralDNAvirusininsects,andverticallytransmittedasaprovirus(Fleming,1991).Thesevirusesareformedonlyincalyxcellsintheovaryofthewasp(WylerandLanzrein,2003).Whenfemalewaspsimplanttheireggsintohostcaterpillarlarvae,thevirusesarereleasedintothebodycavityofalepidopterahost,suppressingtheimmunesystem.Thisallowsthesurvivalofthewaspeggsandlarvaetodevelopintonewadults.Inthisway,polydnavirusinwaspsplaysaroleasanursecellbysurroundingtheeggsandlarvaeandblockingthecaterpillarhost'santi-parasitedefenseresponse(Villareal,2001).Theseexamplesinhumansandwaspsshowthatnotallviralinfectionsarepathogenic.Manyvirusescaninfecttheirhostpersistentlythroughoutthehost'slifetimewithoutdisease.Suchvirusescanbringtheviralseedsofgeneticcreationintotheirhost(Villareal,2001,2003).NucleotidesequencingofDNApolyadenvirushasrevealedacomplexorganization,resemblingaeukaryotegenomicregionmorethanaviralgenome.Althoughendocellularsymbiontgenomeshaveundergoneadramaticlossofgenes,evolutionofsymbioticvirusesappearstobecharacterizedbyextensiveduplicationofvirulencegenescodingfortruncatedversionsofcellularproteins(Espagneetal,2004).Theimportanceofheterochromatin,epigenesist,non-codingDNA,andnon-transcriptionalgenesIntheframeworkoftheVIIIInternationalCongressofGenetic,in1949,RichardGoldschmidtfinishedhisoralpresentationabout"heterochromaticheredity"withthenextquestion:"Shouldhetrochromaticmutationbeconsideredamajorfactorinmacroevolution?".However,inthesynthetictheoryofevolutionframework,theseideaswerenotaccepted.Evolutionistsatthattimefocusedtheirattentiononeuchromaticregionswhereproteincodinggenesarelocated.Yearslater,withtheadventofthecentraldogmaofmolecularbiology,structuralgenesbecameevenmoreimportantinevolutionarygenetics.Inthisconceptualspace,thegenewasstrictlyconsideredasasequenceofnucleotidesthatresultedfromaprotein.Therestofthegenomewasconsidered"uselessgeneticmaterial"or"geneticjunk".Heterochromatin,whereDNAsatelliterepeatsarelocated,mediatesmanydiversefunctionswithinthecellnucleus,includingcentromerefunctions,genesilencing,andnuclearorganization.RecentstudiesidentifiedmethylationofthehistoneH3tailasapost-translationalmarkerthataffectsacetylationandphosphorylationofhistonetailresidues,andalsoactsasarecognitionsignalforbindingofheterochromatinprotein1(HP1)(DillonandFestnstein,2002).Thesepersistentnon-geneticalterationsinchromatinhavebeennamedepigeneticchanges(Dangetal.2009).Thepost-translationalmodificationofhistonetailsgeneratea"histonecode"thatdefineslocalandglobalchromatinstates;theresultantregulationofgenefunctionisthoughttogoverncellfate,proliferationanddifferentiation(StralandAllis,2000).Otherepigeneticmethylationmarkersinthehistone3(H3)ineukaryoteXchromosomeshavebeencorrelatedtoactivegeneexpressionandalsotogenesilencing(Lachneretal.,2001,Nakayamaetal.,2001).RegulationofXinactivationinmammalsisanotherclassicexampleofepigenetics.TheoriginalchoiceofwhichXchromosomewillbeinactivatedoccursearlyduringembryogenesis.Inactivationisrandominthosecellsthatformtheproperembryo,whereasthepaternalXchromosomeisalwayschosenforinactivationinthosecellsthatwillformextraembryonictissues(ParkandKuroda,2001).Thislastepigeneticmechanismisanexampleofagenomicimprinting,similartothosedescribedinsexdeterminationofCoccids(Insecta)(Brown,1964,1966).Inrecentyears,DNAsequencinghasrevealedthatthehumangenomecomprises3billionbasepairs,butonlyapproximately2%correspondtoproteincodinggenesorstructuralgenes.Thereareotherfunctionalgenesinthisarea,suchasribosomalRNAandtransferRNA.Theremaining98%arenon-codingDNAlocatedinheterochromaticareasandrepeatedDNA.Studiesofmoleculargeneticshaveshownthatthesenon-codingDNAareusefulfortheorganismandhavebeencalled,inaholisticconcept,"non-transcriptionalgenes"(Frías,2004).Thus,inabroadconceptofgenes,theycorrespondtocodingornon-codingsequencesofDNAthathavearoleinthebody.Therefore,telomericgenes,centromericgenesandoriginofreplicationgenesarelocatedintheserepeatedDNAareas(Frías,2007a).Recently,non-codingRNAessentialingeneticregulationhasbeendiscoveredandinPearson'sopinion(2006)theycouldbecalled"genes".Atpresentweknowthatmanynon-codingRNA(smallRNAandinterferenceRNA)areimportantingeneticexpression.Manyofthesedouble-helixRNAhaveaviralorigin(LauandBartel.2003).Prokaryotesandvirushaveonlystructuralgenesthatarealsopresentinalleukaryotes.Therefore,thesegenescanbeconsideredas"precursorgenes"or"lowergenes"(plesiomophies)ofevolutionaryprocesses.Non-transcriptionalgenes,presentonlyineukaryotes,aremoreadvancedorhighergenes(apomorphies)(Frías,2007a).Inrecentyears,studiesofspeciationhaveprincipallyfocusedtheirattentiontoDNAsequencinginordertofindmoleculardiagnosticcharactersatthespecieslevel.Molecularphylogeniesdonotalwayscoincidewithmorphologicalphylogenies(Bitschetal.,2004,RubinoffandHolland,2005).Speciesdescriptionisstillbasedonmorphology,butmoleculartoolsappliedtophylogeneticanalysiscanbeagoodcomplementaryapproachtoinferevolutionaryrelationships.ThehomeoticmutationandthelimitationofgradualevolutionClassically,mutationswithsmalleffectshavebeenveryimportanttoexplaingradualisminorganicevolutionandbiodiversity.Homeoticmutationsthatregulatethedevelopmentofeukaryoteswerenotconsideredinitiallyinthesynthetictheoryofevolution.HomeosisisatermcoinedbyWilliamBatesonin1894inhisbookMaterialsfortheStudyofVariation.Homeoticmutationexplainsthereplacementofasegmentalstructurebyanotherduringdevelopment,forexample:eye-stalksandantennae(Goldschmidt1945a).In1915,CalvinBridgefoundthemutationBithoraxinDrosophila.Yearslater,GoldschmidtdescribedseveralhomeoticmutationsinD.melanogaster,particularlythoseinpodoptera,antenna-pediamutation,tetralteramutation(transformationofwingsintohalteres),andtretaptera(transformationofhalteresinwings)(Goldschmidt1945b,1945c).Inhisbook,ThematerialbasisofevolutionGoldschmidtproposedanewtheoryoforganicevolutionbasedonthesehomeoticmutationsandintroducingtheconceptsofmacroevolutionandmicroevolution(Goldschmidt1943).Goldschimidtthoughtthatthesemacromutationsexplainspeciation(macroevolution)bychangesinthedevelopmentoforganisms.Butthisviewwasnotconsideredbycontemporaryevolutionists(Dobzhansky,1940).Thecornerstonesofthesynthetictheoryofevolutionaremicroevolutionandgradualism,basedonmutationswithsmalleffects(poligenes).Themicroevolutionarymechanismsarethesameasthosethatoperateatdifferentlevelsofspeciesandexplaintheexistenceofhighertaxonomiccategories(macroevolution)suchasgenera,families,orders,class,phylumetc.But,forGoldschmidt,microevolutionarymechanismsdonotexplaintheformationofspecies,theyonlygeneratepolymorphisminpopulationsthatarefrequentlyreversible.Homeoticandsystemicmutationarefundamentalfactorsontheoriginofnewspeciesandonotherhighertaxonomiccategories.Manyhomeoticmutationsarenotadaptivewhileotherscouldbe.Forinstance,themutationofophthalmopteradescribedbyMorganinD.melanogaster,whichappearsaslargeinflatedexpansions,usuallyoriginatingintheeyes,isnotanadaptivemutationinDrosophila.Nevertheless,inseveralspeciesofthegenusPhytalmia(Haplostomata,Phytalmiidae)themaleisadornedwithexpandedoutgrowthsfromitseyes,bearingaremarkableresemblancetothemoreextremetypesofophthalmopterafoundinDrosophila.Thus,thesehomeoticmutations,whicharemonstrositiesinDrosophila,appearasanormaltaxonomicfeatureoftheotherfly(GoldschmidtandLederman-Klein,1959).Manyotherexaggeratedstructureshavebeendescribedininsects,generallyseeninmales,thatareusefulforsexualselection(Whittington,2006;EmlenandNijhout,2000).CurrentlytheworksofGarcia-Bellido(1977)andLewis(1978)onDrosophilahomeoticmutationshavebecomefundamentaltoexplainthegeneticbasisofdevelopmentandevolutionineukaryoteorganisms(Carroll,1995).Homeoticgenesarehighlyconservativeandhaveanimportantroleintheregulationandexpressionofthegeneduringthedevelopmentofeukaryotes.Thesegenesarefoundinthemostprimitiveinvertebrates,vertebratesandplants(Buschetal.,1999Shenketat.,1993)andalsointhehumangenome.MajorgenesareHoxandPaxgenesthatproducedisturbancesinearlydevelopment.ThehumanHoxgenesshowhomologywithhomeoticboxgenesofDrosophila.Paxgenescontainanucleotidesequencecalledpairedbox,originallydescribedinasegmentationgeneinDrosophila(Solari,1999).Inmosttaxa,genotypicchangesaremorphologicallymanifestedtocauseevidentphenotypicdiscontinuitiesindifferentpopulations.Basedonthesediscontinuitiesandfossilevidence,thepaleontologistsEldredgeandGould(1972)postulatedthetheoryofpunctuatedequilibria;analternativetophyleticgradualism.However,sometimes,morphologicalchangesareminimal,resultingincrypticspeciescomplexes.Inthesecases,thegreatestdifferencesarefoundinthebehaviorofindividuals.Theevolutionaryleapisnotmorphological,butratherbehavioralandecologicalandthenewmechanismofreproductiveisolationispre-mating.Anotheraspectthathasnotreceivedsufficientattentioninneo-Darwinismischangesinmorphologyduetoheterochronyandepigénesisduringdevelopment.ConradH.WaddingtonandRichardGoldschmidtwarnedaboutthisexclusioninatimelymanner,buttheirclaimswerenotconsideredbyothercontemporaryscientists(Reig,1991).Afewyearslater,Gould(1977)proposedamodelprimarilybasedondevelopmentacceleration(hypermorphy)orretardation(neoteny).Bothprocessescausemorphologicaldiscontinuitiesandcouldgiverisetonewspecies(Frías2009).ExcessiveimportancetoextrinsicbarriersinanimalspeciationThemodeofspeciationinnaturalpopulationsisacentralprobleminthesynthetictheoryofevolution.InTheOriginofSpeciesDarwinconsideredspeciationassynonymoustoevolutionandthatonespeciesproceedspre-existingspecies.Romanes(1897)calledspeciationthetransformationofaspeciesovertimeanditsmultiplicationinthespace(Mayr,1949).Thereisconsensusthatnewspeciesarisewhennewreproductivemechanisms,post-copulatoryorpre-copulatory,appearandsuspendthegeneflowamongpopulations.However,thereisnoconsensusifthesenewisolatingmechanismsariseinsympatry,allopatryorparapatry.Thus,aprobleminspeciationisunderstandingtheoriginofintrinsicisolatingbarriersthatpreventthegeneflowinsympatry.Anothertaskisunderstandingwhichevolutionaryforcesproducedthesebarriers(CoyneandOrr,2004).Theallopatricmodelisthemostwidelyacceptedmodelofspeciationintheframeworkofthesynthetictheoryofevolution.ErnestMayrwasthearchitectthismodel,inwhichinteresthasfocusedongeographicspeciation(Mayr,1949,Mayr,1968).Thismodelisdesignedasaprocessofchangeinabiologicalsystemduetoexternalforces.Theexistenceofanextrinsicbarrierisaprerequisitetotheemergenceofnewreproductiveisolationmechanismsandnewspecies(Mayr,1949).Therefore,thisisamechanisticmodelinwhichanimalbehaviordoesnothavearolewithoutapriorinterruptionofgeneflowamongpopulationsbyanextrinsicbarrier(Reig,1991).Consideringthatseveralmillionspecieshavebeendescribedandmanyothershavenotyetbeendescribed,therearenotenoughgeographicalbarrierstoexplaintheoriginofnewintrinsicisolationmechanismsandspeciationinallopatricconditions.Apparentlytheallopatricmodelisnotthemostparsimoniousmodeltoexplainspeciation.Intrinsicmechanismsofspecies,suchashomeosis,chromosomalrearrangements,developmentgenetics,epigénesis,andbehavioralimprintingcouldbethemostcommontoexplaintheoriginofnewisolationmechanismsandspeciationinsympatryorinsemi-geographicconditions.Asanalternativetoallopatricspeciation,BenjaminWalsh(1864)offeredatheoryinwhichahostraceofphytophagousinsectsevolvesinsympatry.InTheOriginofSpecies,DarwinemphasizedWalsh'sideaoftheoriginofnewvarietiesandspeciesofphytopagousinsectsinsympatry.MaynardSmith(1966)proposedatheoreticalmodelforsympatricspeciationthroughdisruptiveselectioninatwonichesituations.GuyBush,studyinghost-raceformationinRhagoletispomonella(Walsh),hasbeenthemaindefenderofsympatricspeciation.Ithasbeenshownthatthechoiceofanewhostplantcanseparatepopulationsjustasamountain,anoceanorarivercan(Gibbons,1996;Wu,1996;Via,2001,Frías,2005,Frías,2007b).Precopulatoryreproductiveisolationinsympatryhasbeenextensivelydemonstratedinphytophagousinsects,especiallyinthefamilyTephritidaeofDíptera(Bush,1969,1994,Federetal,1994,Frías1989,2001,2005).Malesandfemalesshowhostfidelityandtheirentirelifecycletakeplaceonhostplants.Hostfidelityismainlyduetotwoclassesofodorant:a)characteristicodorreleasedbyplants(ChristensonandFoote,1960)and,b)pheromonesreleasedbymalesandfemalesontheirhostplants(Katsoyannos,1975;Prokopy,1976).Theolfactorysystemofinsectsconsistsofthreeclassesofproteins:1)odorantbindingprotein(OBPs);2)olfactoryreceptors(ORs);and3)odorantdegradingenzymes(ODEs).OBPsconstitutemulti-genefamiliesandconsistoftwogroups:1)bindingproteinsofgeneralodorant;and2)pheromonebindingproteins(Sanchez-Gracia,2005).Changesinchemicalsofplantsandinproteinsofodorantreceptorsinfliesmayexplainhostchangesundersympatry.Mostparadigmsofsympatricspeciationinvolvecolonizationbyaphytophagousinsectofanintroducedcultivatedhostplant(Bushl969,Frías2007b).Recentlyhowever,amodelofsympatricspeciationhasbeenpostulatedthroughtheco-evolutionbetweenspeciesofthegenusTrupanea(Tephritidae)andtheirhostplantsofthegenusHaplopappus(Asteraceae),basedonthehybridizationofhostplants(Frías,2005).Comparedtoothermodelsofsympatricspeciation,thisisthemostparsimoniousmodelofspeciationbecausethehybridplantisonlydistributedtoplaceswherebothparentalplantscoexist,correspondingtoaprimarystateoftheevolutionofpolyploidcomplexesinplants,ashasbeenpostulatedbyStebbins.ThenewspeciesTrupaneasimpatricaisassociatedwithhybridplantsandderivedsympatricallyfromaT.foliosispopulation,whichisassociatedwithoneoftheparentalplants(Frías,2005).Sincefrequentnaturalhybridizationtakesplacesimpatricallyamongangiospermspecies(Grant,1981),themodelofsympatricspeciationinphytophagousinsects,involvingcolonizationofnewlyestablishedhybridplantspecies,couldbeverycommonininsectsassociatedwithAsteraceae(Frías,2005).RecentstudiesofmolecularbiologyinthenervoussystemofDrosophilaprovideabasisforunderstandinghowlearnedbehaviorofthelarvaecouldbeinheritedbytheadult.IthasbeenfoundthatsomenervecellsofthecephalicganglionofDrosophilalarvaecontributetoformingthenervoussystemofadults.(GerberandStocker,2007).StudiesoftheparasitoidwaspAphidiumervihavedemonstratedthatodorlearningduringimmaturestagesistransferredtoadults,suggestingthattheacquisitionofanolfactorymemoryduringthelarvalstagepersiststhroughmetamorphosis(Gutierrez-Ibañezetal.2007).Thesefindingsindicatethathostfidelitycouldalsobedeterminedbybehavioralimprintingintheframeworkofaneo-Lamarckianmodel.Althoughsympatricspeciationbyhybridizationandallopolyploidyinplantsiswidelyaccepted,Gallardoetal.(1999)discoveredpolyploidyinamammal.Thisfindinggaveawindowtosympatricspeciationinanimalsintheabsenceofgeographicbarriers.Anothermodelofspeciationwithoutgeographicbarriers,insemi-geographicconditionsorparapatricspeciation,occursthroughintrinsicbarrierscausedbychromosomalrearrangementsandnegativeheterosisofhybrids(White,1974;White,1978;FríasandAtria1998;Gravilets,2000).Torefertothesekaryotypeschanges,Goldschmidtintroducedtheconceptof"systemicmutation"basedonthetransformationofintra-chromosomalpattern.Anewspatiallydifferentrearrangementofintrachromosomalconstitutionoriginatesfrominversion,translocations,orheterochromaticmodifications.Andthusanew,stablesystememergesthatleadstospeciation(Goldschmidt1943;Bush,1982).Stegnii(1996)extendstheconceptofsystemicmutationincorporatingthosechangesthatleadtonewrearrangementsofthechromocentricapparatus,aswellaschangesrelatedtothechromosome-membraneconnectionsystem.Goldchmidt'sideascontributedsignificantlytounderstandingtheroleofchromosomalrearrangementsinthespeciationofcertaingroupsoforganisms,especiallyinDrosophilaspecies(Dobzhansky,1973;Brncic,1957).However,therolesofheterochromaticchangesandchromocentricapparatushavenotbeenextensivelystudied.Ithasbeenarguedthatmacroevolutionhasarelationshiptocentromericandtelomericheterochromatinchangesandalsotochangesinthechromocentricapparatusforspeciesbelongingtotwodifferentphyleticgroups,Díptera(Tephritidae)andMepraia(Reduviidae).Allthesechomosomicrearrangements,especiallythoseinMepraiaspp,explainhowpostcopulatoryreproductiveisolationmechanisms,withoutanextrinsicbarrier,originated(FríasandAtria,1998;Frías,2009).CONCLUSIONItisclearthatthegeneticcodeisfoundinstructuralgenes,lowergenesorancestralgenes,whicharesharedwithvirusesandprokaryotes.Apparentlyhowever,muchofthegeneticprogramthatmakesdifferentiationanddevelopmentofamulticellularorganismspossibleisinnon-codingDNA,wherenon-transcriptionalgenes,transposableelementsandendogenousvirusesarelocated.Thesegenesarelinkedtotheadventofnewandvitalrolesineukaryotes,suchaschromosomeorigin,mitosis,meiosis,celldifferentiationanddevelopment.However,thegeneticprogramisnotonlylocatedintheDNA,butalsoinhigherlevelsofgenomicorganization.IthasbeenarguedthatDNAmethylationisastableepigeneticmodificationandgeneimprintingthatevolvedindependentlyinangiospermplantsandmammals.(Hsiehetal.,2009;Gehringetal.,2009).Duetogenomicimprinting,epigeneticchangesareinheritedinadifferentmannerfromMendel'sprinciples.Thegeneticcodeisuniversal,herewefindthebasicelementsofthegeneticprogramresponsiblefordevelopinganeworganismandnewlifeforms.Thisprogramisexpressedorterminatedduetogeneticandepigeneticinformationandexternalenvironmentalconditions.Speciationalwaysinvolvesgenotypic,epigenotypicandphenotypicleaps.Smallleapsoriginatespecies,largeleapsoriginategenera,otherlargerleapsoriginatefamilies,andthusprogressivelylargerleapscouldevenexplaintheemergenceofhighersystematiccategories.ThegreatextinctionoftheJurassicandthegreatspeciesexplosionintheCambrianandtheCretaceousdemonstratetheexistenceofleapsinthehistoryoforganicevolution.Thesefactsindicatethatspeciationisnotgradual.Naturalselectiondoesnothaveacreativeeffectonspecies,butratherbarriersthattheorganismmustavoid.Intrinsicepigeneticandgeneticfactorsareresponsibleforinducingtheformationofnewspeciesinnewecologicalenvironments.Neitherhasatmosphericpressureledtothecreationofbirdsorbutterflies,andasMonodandJacobsaid,"Itisjustbychanceandnecessity."Newgenomicandepigenomiccombinationsrandomlyemerged,andifenvironmentsaresuitableforthesenewgenotypes,thespeciesareadaptedtotheenvironments.Metaphoricallyspeaking,atmosphericpressuredidnotcreatetheairplane;itisthemechanicwhoadjuststhevehicletomakeitfly.Moreover,theroleofvirusesintheevolutionandadaptationofprokaryotesandeukaryoteshasnotbeenevaluatedintheframeworkofthesynthetictheory.Thereisnobridgebetweenvirologyandevolutionarytheory.Thisisprobablybecauseviruseshavelongbeenconsideredtohaveoriginatedfromthegenomeofeukaryotes.TheywouldhavebeenfragmentsofRNAorDNAcellsthatescapedalongtimeagofromeukaryoticchromosomes,evolvingafterwardsbycapturingadditionalgenesfromthegenomesoftheirhosts.Nevertheless,thisviewhasnowbeenchallengedbythediscoveryofribozymesandbythesurprisinghomologybetweenviruseswithverydistantlyrelatedhosts,andbyphylogeneticanalysessuggestingthatgenesmighthaveflowedfromvirusestoeukaryoticchromosomes(Fileéetal.,2003).IfRNAviruseswerethefirstlivingmanifestation,thentheycouldbemolecularfossilsofthisprimitiveRNAworld(Chela-Flores,1994).Inthispool,RNAviruseswouldhaveevolvedfirst,followedbyretro-elementsandDNAviruses.Thevirusworldconceptandthesemodelsofmajortransitionsintheevolutionofcellsprovidecomplementarypiecesofanemergingcoherentpictureofthehistoryoflife(Kooninetal,2006).ThelargeamountofretrovirusesDNAinthehumangenomeandothereukaryotes,apparentlycontradictsthedebuggingroleofnaturalselection.However,theincreaseinrepeatedDNAwiththecomplexityofhigherorganismsshowsanadaptivevalue(LauandBartel,2003).Thus,theparadoxofC-valuewouldnotbeaparadox(Frías,2007a).Alargeamountofredundantgeneticmaterialineukaryoteshasaviralorigin,inparticularsmallRNA,RNAinterference,intronsandmobilegeneticelements.Allthesegeneticselementswerehorizontallyacquired,butonceincorporatedintothehostgenomeandpassingtheWeissmanbarrier,theywereverticallytransmittedaccordingaMendelianmodelofheredity.Thus,Steele'sassumptionisprobablycorrectandhismodelcouldbeexpandedtoexplaintheheredityofthelargeamountofDNAretrovirusineukaryotes.IthasbeenhavebeenfoundthatDNAvirus(polydnvirus)inparasiticwaspscouldbeembeddedinthegenomeofthehost.BothDNAvirusesandretroviruseshaveasymbioticrelationshipwiththehost.Findingsinthehumangenome,suchasgenesfrombacteria,virusesacquiredbyhorizontaltransmissionandhomologousregionsofhumangeneswithotherorganisms,suchasDrosophila(KatohandKatoh,2003),indicatethattheeukaryoticgenomeisunstableoveralongtime-scale.However,itmaybeamosaicflowofinformationfromdifferentsourcesinasymbioticco-evolutionaryprocess.Thestudyofthehumangenomeevolutionhasconcentratedonhumansandtheirhominidancestors,withoutmuchattentiontootherorganismsandvirusesthatalsoevolvedfromthesameenvironments(VanBlerkom,2003).Withrespecttogenesofendogenousvirusesembeddedinthehostgenome,thereisdoubtwhetherthesegenesshouldbeconsideredforeignorfromthehost,asoccurswithmitochondrialandchloroplastgenes.Itisnecessarytoestablishbridgesbetweenvirusesandeukaryoticgenomeorganizationtobetterunderstandingtheroleoflateralgenetictransferencesinmacro-evolutionaryprocesses.Inparticular,itisnecessarytocarryoutfunctionalgenomicsstudies.ThroughthecontributionsofLynnMargulis(1988),itiscurrentlyacceptedthatmitochondriaandchloroplastareendosymbiontsofbacterialorigin.ManybiologistsalsoaccepttheecologicalGaiahypothesisofLovelockandMargulis(1974),wherelivingorganismareintegratedwithotherphysicalcomponentsinourplanetinordertomaintainadynamicbalanceorhomeostasisinthesystemthatcounteractsthesecondlawofthermodynamics.Itislikelythatviruseshaveparticipatedformillionsofyearsas"workers",remodelingtheeukaryoticgenomeandproducingevolutionarynoveltiestogetherwithotherclassicalmechanisms,suchashomeoticandsystemicmutationsandchromosomicrearrangements,joinedtootherfactorslikeepigénesisandheterochronyduringdevelopment.Allthesenewmolecularaspectsuncoveredbythesynthetictheoryofevolutionsuggesttheneedtomakeanewevolutionarysynthesis.ACKNOWLEDGEMENTSThisisaposthumoustributetoDr.GustavoHoeckerSalasThanktoananonymousreviewerforhissuggestionsthathelpedmeimprovethemanuscript.ThisresearchhasbeensupportedbyProjectFIBAS06/08DIUMCE.REFERENCESAHUJAMR(1988)SomaticCellGeneticsofWoodyPlants.LuwerAcademicPublishers.USA.231pp. [ Links ]BARDAROVS,BARDAROVJRMS,PAVELKAV,SAMBANDAMURTHYM,LARSENJ,TUFARIELLOJ,CHANGHATFULL,JACOBSWR(2002)Specializedtransduction:anefficientmethodforgeneratingmarkedandunmarkedtargetedgenedisruptionsinMycobacteriumtuberculosis,M.bovisBCGandMsmegmatis.Microbiology148:3007-3017. [ Links ]BITSCHJ,BITSCHC,BOURGOINTH,HAENSECD(2004)Thephylogeneticpositionofearlyhexapodlineages:morphologicaldatacontradictmoleculardata.SystEntomol29:433-440. [ Links ]BRNCICD(1957)HeterosisandtheintegrationofthegenotypeingeographicpopulationsofDrosophilapseudoobscura.Genetics39:77-88. [ Links ]BROWNSW(1964)HeterochromaticchromosomesintheCoccids.Science145(3628):130-136. [ Links ]BROWNSW(1966)Heterochromatin.Science28(151):417-425. [ Links ]BUSCHMA,BOMBLIESK,WEIGELD(1999)ActivationofafloralhomeoticgeneinArabidopsis.Science285(5427):585-587. [ Links ]BUSHGL(1969).Matingbehaviour,hostspecificity,andecologicalsignificanceofsiblingspeciesinfrugivorousfliesofthegenusRhagoletís(Díptera:Tephritidae).AmNat103(934):669-672). [ Links ]BUSHGL(1982).Goldschmidt'sFolies.Paleobiology,8(4):463-469. [ Links ]BUSHGL(1994).Sympatricspeciation:newwineinoldbottles.TrendsEcologyEvol9:285-288. [ Links ]CARROLLSB(1995)HomeoticgenesandtheevolutionofArthropodsandChordates.Nature376:479-485. [ Links ]CECHTR(1986)RNAasanenzyme.ScientificAmerican253:51-59. [ Links ]CHELA-FLORESJ(1994)AreviroidsmolecularfossilsoftheRNAworld?.JThBiol166:163-166. [ Links ]COYNEJA,ORRHA(2004)Species:RealityandConcepts:9-54.InCoyneJA,ORRHAed,Speciation,SinauerAssociates,Inc.Publisher,SunderlandMassachusetsUSA:545pp. [ Links ]CHRISTENSONLD,FOOTERH(I960)Biologyoffruitflies.AnnRevEntomol5:171-192. [ Links ]DANGWK,STEFFENK,PERRYR,DORSEYJA,JOHNSONFB,SHILATIFARDA,KAEBERLEINM,KENNEDYBK,BERGERSL(2009)HistoneH4lysine16acetylationregulatecellularlifespan.Nature459(7248):802-807. [ Links ]DARLINGTONCD(1937)TheearlyhibridisersandtheoriginsofGenetics.Herbetia:63-69. [ Links ]DARWINCH(1983)ElOrigendelasEspecies.Sarpe,Madrid.638pag. [ Links ]DILLONN,FESTENSTEINR(2002)Unravellingheterochromatin:competitionbetweenpositiveandnegativefactorsregulatesaccessibility.TrendsGenet18(5):252-258. [ Links ]DOBZHANSKYTH(1940)Catastrophismversusevolutionism.Science2390:356-358. [ Links ]DOBZHANSKYTH(1973)GenéticadoProcessoEvolutivo.EditoradaUníversídadedeSaoPaulo.Brasil,453pp. [ Links ]DOOLITTLEWF(2004)Nuevoárboldelavida.En:Temas35,Biodiversídad.InvestigaciónyCiencias,PrimerSemestre2004.PrensaCientífica,S.A.España:12-17pp. [ Links ]EASTEM(1924)Twodecadesofgeneticprogress.AnnualReportSmithsonianInstitution,WashingtonGovernmentPrintingOffice,2734:285-295 [ Links ]ELDREDGEN,GOULDSJ(1972)Punctuatedequilibria:analternativetophyleticgradualismInT.J.M.Schopf,(ed).,ModelsinPaleobiology.SanFrancisco:FreemanCooper,pp.82-115. [ Links ]EMLENDJNIJHOUTHF(2000)Thedevelopmentandevolutionofexaggeratedmorphologiesininsects.AnnRevEntomol45:661-708. [ Links ]ESPAGNEE,DUPUYC,HUGUETE,CATTOLICOL,PROVOSTB,MARTINSN,POIRIÉM,PERIQUETG,DREZENJM(2004)GenomeSequenceofaPolydnavirus:InsightsintoSymbioticVirusEvolution.Science306(5694):286-289. [ Links ]FEDERLJ,OPPSB,WLAZLOB,REYNOLDK,GOW,SPISAKS(1994)Hostfidelityisaneffectiveprematingbarrierbetweensympatricracesoftheapplemaggotfly.ProceedingsofNatiAcadSci91:117-135. [ Links ]FLEMINGJG,SUMMERSMD(1991)PolydnavirusDNAisintegratedintheDNAofitsparasitoidwasphost.ProcNatiAcadSci88(21)9770-9774. [ Links ]FILÉEJ,FORTERREP,LAURENJ(2003)Theroleplayedbyvirusesintheevolutionoftheirhosts:aviewbasedoninformationalproteinphylogenies.ResMicrobiol154(4):237-243. [ Links ]FRÍASLD(1989)DiferenciaciónecológicayreproductivadedosrazashuéspedesdeRhagoletisconversa(Bréthes)(Díptera:Tephritidae).ActEntomolChil15:163-170. [ Links ]FRÍASLDATRIAJ(1998)Chromosomalvariation,macroevolutionandpossibleparapatricspeciationinMepraiaspinolai(Porter)(Hemiptera:Redivüdae).GenMolBiol21(2):179-184. [ Links ]FRÍASLD(2001)DiferenciasgenéticasymorfológicasdelosestadosinmadurosdedosrazasdeRhagoletisconversa(Bréthes)(Díptera:Tephritidae)asociadasaplantasSolanum,distribucióngeográficayposibleorigenensimpatríadeunanuevaespecie.RevChilHistNat74:73-90. [ Links ]FRÍASLD(2004)Lahetrocromatinaysurolfunctional.¿Quéesungen?,Desdeeldogmacentraldelabiologíamolecularalasecuencíacíóndelgenomahumano.RILEditores,148pp. [ Links ]FRÍASLD(2005)TrupaneasímpatrícaanewspeciesofTephritinae(Diptera:Tephritidae)infestinganendemicHaplopappushybrid(Asteraceae)inChile.ActEntomolChil29(l):13-45. [ Links ]FRÍASLD(2007)aThephylogenyofthegene,fom"Lower"nakedstructuralgenesto"Higher"Non-TranscriptionalGenes.RivBiol/BiolFor100:221-246. [ Links ]FRÍASLD(2007)bEspeciaciónsímpatrícaysusimplicacionesgenéticasymorfológicasenmoscasdelafruta.En:HERNANDEZ-ORTIZ(ed):MoscasdelasfrutasenLatinoamérica(Díptera:Tephritidae):Diversidad,BiologíayManejo.SyG.editores,DistritoFederal,México,pp1-26. [ Links ]FRÍASLD(2009)Geneticsandepigeneticsvariationinthesexchromosomesandtheirimpactonmorphologicalchangesandparapatricspeciation:speciesofthegenusMepraiainChile(Hemiptera:Reduviidae)acasestudy.In:)WEINGARTENCN,JEFFERSONSE(eds)Sexchromosomes:Genetics,abnormalities,anddisorders.NovaSciencePublishers,Inc.pp.165-206. [ Links ]GALLARDOMH,BICKHAMJW,HONEYCUTTRL,OJEDARA,KÓHLERN(1999).DiscoveryofTetraploidyinMammal.Nature401:341. [ Links ]GARCÍA-BELLIDOA(1977)Homeoticandataviemutationsininsects.AmZool1:613-629. [ Links ]GEHRINGM,BUBBKL,HENIKOFFS(2009)Extensivedemethylationofrepetitiveelementsduringseeddevelopmentunderliesgeneimprinting.Science324:1447-1451. [ Links ]GERBERBSTOCKERRF(2007)TheDrosophilalarvaasamodelforstudingchemosensationandchemosensorylearning:Areview.ChemSen32:65-89. [ Links ]GIBBONSA.(1996)Onthemanyoriginsofspecies.Science173:1496-1499. [ Links ]GOLDSCHMIDTB(1943)Labasematerialdelaevolución.Espasa-Calpe,BuenosAires,ArgentinaS.A,364pp. [ Links ]GOLDSCHMIDTRB(1945)aThestructureofpodoptera,ahomoticmutantofDrosophilamelanogaster.JMorphol77(1):71-103. [ Links ]GOLDSCHMIDTRB(1945)bPodoptera,ahomeoticmutantofDrosophilaandtheoriginofinsectswings.Science101(2624):389-390. [ Links ]GOLDSCHMIDTRB(1945)c.Evolutionofmouthpartsindípteraacountercritique.Pan-PacifEntomol21:41-47. [ Links ]GOLDSCHMIDTRB(1949)HeterochromaticHeredity.ReprintedfromProceedingsoftheEigthInternationalCongressofGenetics.HereditasSupplVol:244-255. [ Links ]GOLDSCHMIDTE,LEDERMAN-KLEINA(1959)ReocurrenceofaforgottenhomeoticmutantinDrosophila.JHeredXLIX(6):262-266. [ Links ]GOULDSJ(1977)Ontogenyandphylogeny.TheBelknapPressofHarvardUniversittyPress,Cambridge,MassachusettsLondon,England501pag. [ Links ]GRANTV(1981)Plantsspeciation.ColumbiaUniversityPress,NewYork,563pp. [ Links ]GRAVILETSS(2000)Waitingtimetoparapatricspeciation.Proc.Roy.Soc.Lon.267:2183-2192. [ Links ]GUTIÉRREZ-IBAÑEZCH,VILLAGRACHA,NIEMEYERHM(2007)PrepupationbehaviouroftheaphidparasitoidAphidiuservi(Haliday)anditsconsequencesforpreimaginallearning.NaturwissenschaftenDOI10.1007/sOOl14-007-0233-3.SpringerVerlag [ Links ]HARRISJR(1998)Placentalendogenousretrovirus(ERV):structural,functionalandevolutionarysignificance.BioEssays20.4:307-316. [ Links ]HSIEHTF,IBARRACHA,SILVAPO,ZEMACHA,ESHED-WILLIAMSL,FISCHERRL,ZILBERMAND(2009)Genome-widedemethylationofArabidopsisendosperm.Science324:1451-1454. [ Links ]HOFFMANNWA(1998)Post-burnreproductionofwoodyplantsinaNeotropicalSavanna:therelativeimportanceofsexualandvegetativereproduction.JapplEcol35:422-433. [ Links ]KATOHM,KATOHM(2003)ComparativegenomicsbetweenDrosophilaandhuman.GenInform14:587-588. [ Links ]KATSOYANNOSBI(1975)Ovipositing-deterring,male-arresting,fruit-markingpheromoneinRhagoloetiscerasi(DípteraTephritidae).EnvironEntomol4(5):801-805. [ Links ]KOONINE,SENKEVICHVTG,DOLJAVV(2006)TheancientVirusWorldandevolutionofcells.BiolDir5:1-29. [ Links ]LACHNERM,OCARROLLDM,REAS,MECHTLERK,JENUWEINT(2001)MethylationofHistoneH3Lysine9createsabindingsiteforHP1proteins.Nature410:116-120. [ Links ]LAUNC,BARTELDP(2003)InterferenciadeARN.InvestigaciónyCiencias,Octubre2003:6-13. [ Links ]LEGNEREF,TSAITC,MEDVEDRA(1976)Environmentalstimulantstoasexualreproductionintheplanarían,Dugesiadorotocephala.Entomophaga21(4):415-423. [ Links ]LEWISEB(1978)AgenecomplexcontrollingsegmentationinDrosophila.Nature276:565-570. [ Links ]LOVELOCKJE,MARGULISL(1974)"Atmospherichomeostasisbyandforthebiosphere-TheGaiahypothesis".Tellus26(1):2-10. [ Links ]MARGULISL(1988)ElorigendelaCélula.EditorialReverte,S.A.Barcelona,150pp. [ Links ]MAYNARDSMITHJ(1966)Sympaticspeciation.Am.Nat.100:637-650. [ Links ]MAYRE(1949)Speciationandsystematics.In:JEPSENGS,SIMPSONGCMAYRE(eds)Genetics,paleontologyandevolution.PrincetonUniversityPress.Pp281-298. [ Links ]MAYRE(1968)Especiesanimalesyevolución.EdicionesdelaUniversidaddeChile.EdicionesArielS.A.808pp. [ Links ]MCCLINTOCKB(1950)"Theoriginandbehaviorofmutablelociinmaize".ProceedingsoftheNatiAcadSri.36:344-555 [ Links ]MCCLINTOCKB(1951)Mutablelociinmaize.CarnegieInstitutionofWashingtonYearbook50,174-181 [ Links ]MOHANJS,NEWTONRJ,SOLTENEJ(1988)EnhancementofsomaticembryogenesisinNorwaySpruce(PiceaabiesL.)TheorApplGen76:501-506. [ Links ]MORGANTH(1943)LaBaseCientíficadelaEvolución.Espasa-CalpesS.A.,BuenosAires,Argentina,329pp. [ Links ]NAKAYAMAJ,RICEJC,STRAHLBD,ALLISCD,GREWALSI(2001)RoleofhístoneH3Lysine9methylationinepigeneticcontrolofheterochromatinassembly.Science292:110-113. [ Links ]OCHMANH,LAWRENCEJGGROISMANEA(2000)Lateralgenetransferandthenatureofbacterialinnovation.Nature405:299-304. [ Links ]PEARSONH(2006)Whatisagene?.Nature44:399-401. [ Links ]PRAKET,KAZAZIANHHJR(2000).Mobileelementsandthehumangenome.NatureRevGenet.1,134-144. [ Links ]PARKY,MIKURODA(2001)EpigeneticaspectsofX-chromosomedosagecompensation.Science293:1083-1085. [ Links ]PRUDHOMMES,BONNAUDB,MALLETF(2005)Endogenousretrovirusesandanimalreproduction.CytGenRes2005;110:353-364. [ Links ]PROKOPYRJ(1976)Feeding,matingandovipositionactivitiesofRhagoletisfaustafliesinnature.AnnEntomolSocAm69:899-904. [ Links ]REIGOA(1991)EldesafíodelagenéticadelADNrecombinanteydelabiologíadeldesarrolloparalaTeoríaSintéticadelaEvolución.ArchBiolMedExp24:425-436. [ Links ]RUBINOFFD,HOLLANDBS(2005)Betweentwoextremes:mitochondrialDNAisneitherthepanaceanorthenemesisofphylogeneticandtaxonomicinference.SystBiol54(6)952-961. [ Links ]RUPPERTEE,BARNESRD(1996)Zoologíadelosinvertebrados.McGraw-Hill.InteramericanaEdicionesS.A.México1114pp. [ Links ]SALZBERG,SL,WHITEO,PETERSONJ,EISENJA(2001)MicrobialGenesintheHumanGenome:LateralTransferorGeneLoss?.Science8:Vol.292(5523):1903-1906 [ Links ]SANCHEZ-GRACIAA(2005)EvoluciónmoleculardelosgenesOS-EyOS-FendiferentesespeciesdeDrosophila.UniversidaddeBarcelona,FacultaddeBiología,DepartamentodeGenética.Barcelona,24pp. [ Links ]SHENKMA,BODEHR,STEELERE(1993)ExpressionofCnox-2,aHorn/Hoxhomeoboxgeneinhydra,iscorrelatedwithaxialpatternformation.Development117:657-667. [ Links ]SOLARIAJ(1999)GenéticaHumana.FundamentosyaplicacionesenMedicina.EditorialMédicaPanamericana,BuenosAires,370pp. [ Links ]STEBBINSGL,AYALAF(1985)Laevolucióndeldarwinismo.InvestCien108:42-53. [ Links ]STEELEEJ,LINDLEYRA,BLANDENRV(1998)Lamarck'ssignature.AllenandUnwin,Sydney,Australia,286pp. [ Links ]STEGNIIVN(1996)Theproblemofsystemicmutations.RussJGen32(1):14-22 [ Links ]STORERTL,USINGERRL(1966)ZoologíaGeneral.2aedición,Barcelona,EditorialOmega.1003pp. [ Links ]STRAHLBD,ALLISCD(2000)Thelanguageofcovalenthistonemodifications.Nature403:41-45. [ Links ]SYVANENM(1984)Theevolutionaryimplicationsofmobilegeneticelements.AnnRevGen.18:271-293. [ Links ]TRISTEMM(2000)Identificationandcharacterizationofnovelhumanendogenousretrovirusfamiliesbyphylogeneticscreeningofthehumangenomemappingprojectdatabase.JVirol74,3715-3730. [ Links ]VANBLERKOMLM(2003)Roleofvirusesinhumanevolution.YearbookPhysAnthropol46:14-46. [ Links ]VENABLES,PJ,BROOKESSM,GRIFFITHSD,WEISSRA,BOYDMT(1995)Abundanceofanendogenousretroviralenvelopeproteininplacentaltrophoblastssuggestsabiologicalfunction.Virology211,589-592,doi:10.1006/viro.l995.1442. [ Links ]VERGARAFS(2002)Lahomeosisylamacroevolución.Ciencia065:42-50.ReddeRevistasCientíficasdeAméricaLatinayelCaribe,EspañayPortugal.UniversidadAutónomadeMéxico. [ Links ]VIAS(2001)Sympatricspeciationinanimals:theuglyducklinggrownup.TrendsEcol.Evol.16:381-390. [ Links ]VILLARREALLP(1997)Onviruses,sex,andmotherhood.JVirolFebruary:859-865. [ Links ]VILLARREALLP(1999)DNAviruscontributiontohostevolution:391-420.In:DOMINGOE,WEBSTERRHOLLABDJ(EDS)OriginandEvolutionofviruses.AcademicPress,NewYork. [ Links ]VILLARREALLP(2000)AhypothesisforDNAvirusesastheoriginofeukaryoticreplicationproteins.JVirol74(15):7079-7084. [ Links ]VILLARREALLP(2001)Persistingvirusescoulplayroleindrivinghostevolution.AmSocAdvSciNews.67(10):501-507. [ Links ]VILLARREALLP(2003)Canvirusesmakeushuman?ProcAmPhilSoc148(3):296-323. [ Links ]WALSHDB(1864)Onphytophagicvaritiesandphytophagousspecies.ProcEntomolSocPhilIII:403-430. [ Links ]WHITEMJD(1974)SpeciationintheAustralianmorabinegrasshoppers.Thecytogeneticevidence.InWHITEMJD(ed)GeneticMechanismsofSpeciationinInsects.AustralianandNewZealandBook,Sidney,Pp57-58 [ Links ]WHITEMJD(1978)ModesofSpeciation.DAVERNCI(ed).WHFreemanandCompany,SanFrancisco,USA.PAGS??? [ Links ]WITTINGTONAE(2006)Extremeheadmorphologyinplastotephritinae(Díptera:Platystomatidae),withapropoitionofclassificationofheadstructuresinAcalyptrataeDíptera:61-83.In:MERZB(ED)Phylogeny,TaxonomyandBiologyofTephritoidflies(Díptera:Tephrítídae).Museumd'HístoíreNaturelle,Geneve,Switzerland,274pp. [ Links ]WOESECR(1998)Theuniversalancestors.ProceedingsoftheNatiAcadSci95(12):6854-6859. [ Links ]WYLERT,LANZREINB(2003)OvarydevelopmentandpolydnavirusmorphogenesisintheparasiticwaspChelonusinanitus.II.Ultrastructuralanalysisofcalyxcelldevelopment,virionformationandrelease.JGenVirol84:1151-1163. [ Links ]WUCL(1996)Endlessforms,severalpowers.Nature382:298-299. [ Links ]Correspondingauthor:DanielFríasL,InstitutodeEntomología,UniversidadMetropolitanadeCienciasdelaEducaciónAvenidaJoséPedroAlessandrí,774,Postalcode:7760197,Santiago,Chile,Telephone:56-2-2412457,Cellularphone:093331688,Faxnumber:56-2-2412728,Email:[email protected]:January19,2010.Inrevisedform:June24,2010.Accepted:July6,2010. Todoelcontenidodeestarevista,exceptodóndeestáidentificado,estábajounaLicenciaCreativeCommons
延伸文章資訊
- 1Modern synthesis (20th century) - Wikipedia
The modern synthesis was the early 20th-century synthesis of Charles Darwin's theory of evolution...
- 2Modern Synthesis | SpringerLink
- 3synthetic theory of evolution | genetics - Encyclopedia Britannica
This theory distinguishes the basic processes of gene mutation and recombination, natural selecti...
- 4Modern Synthetic Theory of Evolution - Vedantu
The Modern Synthetic theory of Evolution is described in terms of genetic changes happening in th...
- 5NEO-DARWINISM-SYNTHETIC THEORY OF EVOLUTION
The Modern Synthetic population of Evolution describes the merging of the Darwinian evolution wit...