Law of large numbers - Wikipedia
文章推薦指數: 80 %
In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. Lawoflargenumbers FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Nottobeconfusedwithlawoftrulylargenumbers. Averagesofrepeatedtrialsconvergetotheexpectedvalue Thisarticleneedsadditionalcitationsforverification.Pleasehelpimprovethisarticlebyaddingcitationstoreliablesources.Unsourcedmaterialmaybechallengedandremoved.Findsources: "Lawoflargenumbers" – news ·newspapers ·books ·scholar ·JSTOR(March2015)(Learnhowandwhentoremovethistemplatemessage) Anillustrationofthelawoflargenumbersusingaparticularrunofrollsofasingledie.Asthenumberofrollsinthisrunincreases,theaverageofthevaluesofalltheresultsapproaches3.5.Althougheachrunwouldshowadistinctiveshapeoverasmallnumberofthrows(attheleft),overalargenumberofrolls(totheright)theshapeswouldbeextremelysimilar. PartofaseriesonstatisticsProbabilitytheory Probability Axioms Determinism System Indeterminism Randomness Probabilityspace Samplespace Event Collectivelyexhaustiveevents Elementaryevent Mutualexclusivity Outcome Singleton Experiment Bernoullitrial Probabilitydistribution Bernoullidistribution Binomialdistribution Normaldistribution Probabilitymeasure Randomvariable Bernoulliprocess Continuousordiscrete Expectedvalue Markovchain Observedvalue Randomwalk Stochasticprocess Complementaryevent Jointprobability Marginalprobability Conditionalprobability Independence Conditionalindependence Lawoftotalprobability Lawoflargenumbers Bayes'theorem Boole'sinequality Venndiagram Treediagram vte Inprobabilitytheory,thelawoflargenumbers(LLN)isatheoremthatdescribestheresultofperformingthesameexperimentalargenumberoftimes.Accordingtothelaw,theaverageoftheresultsobtainedfromalargenumberoftrialsshouldbeclosetotheexpectedvalueandtendstobecomeclosertotheexpectedvalueasmoretrialsareperformed.[1] TheLLNisimportantbecauseitguaranteesstablelong-termresultsfortheaveragesofsomerandomevents.[1][2]Forexample,whileacasinomaylosemoneyinasinglespinoftheroulettewheel,itsearningswilltendtowardsapredictablepercentageoveralargenumberofspins.Anywinningstreakbyaplayerwilleventuallybeovercomebytheparametersofthegame.Importantly,thelawonlyapplies(asthenameindicates)whenalargenumberofobservationsisconsidered.Thereisnoprinciplethatasmallnumberofobservationswillcoincidewiththeexpectedvalueorthatastreakofonevaluewillimmediatelybe"balanced"bytheothers(seethegambler'sfallacy). ItisalsoimportanttonotethattheLLNonlyappliestotheaverage.Therefore,while lim n → ∞ ∑ i = 1 n X i n − X ¯ = 0 {\displaystyle\lim_{n\to\infty}\sum_{i=1}^{n}{\frac{X_{i}}{n}}-{\overline{X}}=0} otherformulasthatlooksimilararenotverified,suchastherawdeviationfrom"theoreticalresults" : ∑ i = 1 n X i − n × X ¯ {\displaystyle\sum_{i=1}^{n}X_{i}-n\times{\overline{X}}} notonlydoesitnotconvergetowardzeroasnincreases,butittendstoincreaseinabsolutevalueasnincreases. Contents 1Examples 2Limitation 3History 4Forms 4.1Weaklaw 4.2Stronglaw 4.3Differencesbetweentheweaklawandthestronglaw 4.4Uniformlawoflargenumbers 4.5Borel'slawoflargenumbers 5Proofoftheweaklaw 5.1ProofusingChebyshev'sinequalityassumingfinitevariance 5.2Proofusingconvergenceofcharacteristicfunctions 6Consequences 7Seealso 8Notes 9References 10Externallinks Examples[edit] Forexample,asinglerollofafair,six-sideddiceproducesoneofthenumbers1,2,3,4,5,or6,eachwithequalprobability.Therefore,theexpectedvalueoftheaverageoftherollsis: 1 + 2 + 3 + 4 + 5 + 6 6 = 3.5 {\displaystyle{\frac{1+2+3+4+5+6}{6}}=3.5} Accordingtothelawoflargenumbers,ifalargenumberofsix-sideddicearerolled,theaverageoftheirvalues(sometimescalledthesamplemean)islikelytobecloseto3.5,withtheprecisionincreasingasmoredicearerolled. ItfollowsfromthelawoflargenumbersthattheempiricalprobabilityofsuccessinaseriesofBernoullitrialswillconvergetothetheoreticalprobability.ForaBernoullirandomvariable,theexpectedvalueisthetheoreticalprobabilityofsuccess,andtheaverageofnsuchvariables(assumingtheyareindependentandidenticallydistributed(i.i.d.))ispreciselytherelativefrequency. Forexample,afaircointossisaBernoullitrial.Whenafaircoinisflippedonce,thetheoreticalprobabilitythattheoutcomewillbeheadsisequalto1⁄2.Therefore,accordingtothelawoflargenumbers,theproportionofheadsina"large"numberofcoinflips"shouldbe"roughly1⁄2.Inparticular,theproportionofheadsafternflipswillalmostsurelyconvergeto1⁄2asnapproachesinfinity. Althoughtheproportionofheads(andtails)approaches1/2,almostsurelytheabsolutedifferenceinthenumberofheadsandtailswillbecomelargeasthenumberofflipsbecomeslarge.Thatis,theprobabilitythattheabsolutedifferenceisasmallnumberapproacheszeroasthenumberofflipsbecomeslarge.Also,almostsurelytheratiooftheabsolutedifferencetothenumberofflipswillapproachzero.Intuitively,theexpecteddifferencegrows,butataslowerratethanthenumberofflips. AnothergoodexampleoftheLLNistheMonteCarlomethod.Thesemethodsareabroadclassofcomputationalalgorithmsthatrelyonrepeatedrandomsamplingtoobtainnumericalresults.Thelargerthenumberofrepetitions,thebettertheapproximationtendstobe.Thereasonthatthismethodisimportantismainlythat,sometimes,itisdifficultorimpossibletouseotherapproaches.[3] Limitation[edit] Theaverageoftheresultsobtainedfromalargenumberoftrialsmayfailtoconvergeinsomecases.Forinstance,theaverageofnresultstakenfromtheCauchydistributionorsomeParetodistributions(α<1)willnotconvergeasnbecomeslarger;thereasonisheavytails.TheCauchydistributionandtheParetodistributionrepresenttwocases:theCauchydistributiondoesnothaveanexpectation,[4]whereastheexpectationoftheParetodistribution(α<1)isinfinite.[5]Anotherexampleiswheretherandomnumbersequalthetangentofanangleuniformlydistributedbetween−90°and+90°.Themedianiszero,buttheexpectedvaluedoesnotexist,andindeedtheaverageofnsuchvariableshavethesamedistributionasonesuchvariable.Itdoesnotconvergeinprobabilitytowardzero(oranyothervalue)asngoestoinfinity. Andifthetrialsembedaselectionbias,typicalinhumaneconomic/rationalbehaviour,theLawoflargenumbersdoesnothelpinsolvingthebias.Evenifthenumberoftrialsisincreasedtheselectionbiasremains. History[edit] Diffusionisanexampleofthelawoflargenumbers.Initially,therearesolutemoleculesontheleftsideofabarrier(magentaline)andnoneontheright.Thebarrierisremoved,andthesolutediffusestofillthewholecontainer.Top:Withasinglemolecule,themotionappearstobequiterandom.Middle:Withmoremolecules,thereisclearlyatrendwherethesolutefillsthecontainermoreandmoreuniformly,buttherearealsorandomfluctuations.Bottom:Withanenormousnumberofsolutemolecules(toomanytosee),therandomnessisessentiallygone:Thesoluteappearstomovesmoothlyandsystematicallyfromhigh-concentrationareastolow-concentrationareas.Inrealisticsituations,chemistscandescribediffusionasadeterministicmacroscopicphenomenon(seeFick'slaws),despiteitsunderlyingrandomnature. TheItalianmathematicianGerolamoCardano(1501–1576)statedwithoutproofthattheaccuraciesofempiricalstatisticstendtoimprovewiththenumberoftrials.[6]Thiswasthenformalizedasalawoflargenumbers.AspecialformoftheLLN(forabinaryrandomvariable)wasfirstprovedbyJacobBernoulli.[7]Ittookhimover20yearstodevelopasufficientlyrigorousmathematicalproofwhichwaspublishedinhisArsConjectandi(TheArtofConjecturing)in1713.Henamedthishis"GoldenTheorem"butitbecamegenerallyknownas"Bernoulli'sTheorem".ThisshouldnotbeconfusedwithBernoulli'sprinciple,namedafterJacobBernoulli'snephewDanielBernoulli.In1837,S.D.Poissonfurtherdescribeditunderthename"laloidesgrandsnombres"("thelawoflargenumbers").[8][9]Thereafter,itwasknownunderbothnames,butthe"lawoflargenumbers"ismostfrequentlyused. AfterBernoulliandPoissonpublishedtheirefforts,othermathematiciansalsocontributedtorefinementofthelaw,includingChebyshev,[10]Markov,Borel,CantelliandKolmogorovandKhinchin.Markovshowedthatthelawcanapplytoarandomvariablethatdoesnothaveafinitevarianceundersomeotherweakerassumption,andKhinchinshowedin1929thatiftheseriesconsistsofindependentidenticallydistributedrandomvariables,itsufficesthattheexpectedvalueexistsfortheweaklawoflargenumberstobetrue.[11][12]ThesefurtherstudieshavegivenrisetotwoprominentformsoftheLLN.Oneiscalledthe"weak"lawandtheotherthe"strong"law,inreferencetotwodifferentmodesofconvergenceofthecumulativesamplemeanstotheexpectedvalue;inparticular,asexplainedbelow,thestrongformimpliestheweak.[11] Forms[edit] Therearetwodifferentversionsofthelawoflargenumbersthataredescribedbelow.Theyarecalledthestronglawoflargenumbersandtheweaklawoflargenumbers.[13][1]StatedforthecasewhereX1,X2,...isaninfinitesequenceofindependentandidenticallydistributed(i.i.d.)LebesgueintegrablerandomvariableswithexpectedvalueE(X1)=E(X2)=...=µ,bothversionsofthelawstatethat–withvirtualcertainty–thesampleaverage X ¯ n = 1 n ( X 1 + ⋯ + X n ) {\displaystyle{\overline{X}}_{n}={\frac{1}{n}}(X_{1}+\cdots+X_{n})} convergestotheexpectedvalue: X ¯ n → μ as n → ∞ . {\displaystyle{\overline{X}}_{n}\to\mu\quad{\textrm{as}}\n\to\infty.} (law.1) (LebesgueintegrabilityofXjmeansthattheexpectedvalueE(Xj)existsaccordingtoLebesgueintegrationandisfinite.ItdoesnotmeanthattheassociatedprobabilitymeasureisabsolutelycontinuouswithrespecttoLebesguemeasure.) Basedonthe(unnecessary,seebelow)assumptionoffinitevariance Var ( X i ) = σ 2 {\displaystyle\operatorname{Var}(X_{i})=\sigma^{2}} (forall i {\displaystylei} )andnocorrelationbetweenrandomvariables,thevarianceoftheaverageofnrandomvariables Var ( X ¯ n ) = Var ( 1 n ( X 1 + ⋯ + X n ) ) = 1 n 2 Var ( X 1 + ⋯ + X n ) = n σ 2 n 2 = σ 2 n . {\displaystyle\operatorname{Var}({\overline{X}}_{n})=\operatorname{Var}({\tfrac{1}{n}}(X_{1}+\cdots+X_{n}))={\frac{1}{n^{2}}}\operatorname{Var}(X_{1}+\cdots+X_{n})={\frac{n\sigma^{2}}{n^{2}}}={\frac{\sigma^{2}}{n}}.} Pleasenotethisassumptionoffinitevariance Var ( X 1 ) = Var ( X 2 ) = … = σ 2 < ∞ {\displaystyle\operatorname{Var}(X_{1})=\operatorname{Var}(X_{2})=\ldots=\sigma^{2} ε {\displaystyle|{\overline{X}}_{n}-\mu|>\varepsilon} happensaninfinitenumberoftimes,althoughatinfrequentintervals.(Notnecessarily | X ¯ n − μ | ≠ 0 {\displaystyle|{\overline{X}}_{n}-\mu|\neq0} foralln). Thestronglawshowsthatthisalmostsurelywillnotoccur.Inparticular,itimpliesthatwithprobability1,wehavethatforanyε>0theinequality | X ¯ n − μ | < ε {\displaystyle|{\overline{X}}_{n}-\mu|0, Pr ( | X − μ | ≥ k σ ) ≤ 1 k 2 . {\displaystyle\Pr(|X-\mu|\geqk\sigma)\leq{\frac{1}{k^{2}}}.} Proofoftheweaklaw[edit] GivenX1,X2,...aninfinitesequenceofi.i.d.randomvariableswithfiniteexpectedvalueE(X1)=E(X2)=...=µ
延伸文章資訊
- 1law of large numbers | statistics | Britannica
law of large numbers, in statistics, the theorem that, as the number of identically distributed, ...
- 2Laws of Large Number - an overview | ScienceDirect Topics
1The law of large numbers states that in a sequence of independent identical trials, for every ε ...
- 3Law Of Large Numbers Definition - Investopedia
The law of large numbers states that an observed sample average from a large sample will be close...
- 4Law of Large Number - an overview | ScienceDirect Topics
Monte Carlo simulations heavily rely on the “law of large numbers”: the distribution of (increasi...
- 5Law of Large Numbers - Definition, Example, Applications in ...
In statistics and probability theory, the law of large numbers is a theorem that describes the re...