微積分學/積分表- 維基教科書,自由的教學讀本 - Wikibooks

文章推薦指數: 80 %
投票人數:10人

微積分學/積分表. 語言 · 監視 · 編輯. < 微积分学 · ← 導數表 · 微積分學 ... 3.1 基本三角函數; 3.2 倒數三角函數; 3.3 降階公式; 3.4 顯形式; 3.5 反三角函數. 微積分學/積分表 語言 監視 編輯 0 ) {\displaystyle\int\sin^{n}(x)\mathrm{d}x=-{\frac{\sin^{n-1}(x)\cos(x)}{n}}+{\frac{n-1}{n}}\int\sin^{n-2}(x)\mathrm{d}x+C\qquad(n>0)}   ∫ cos n ⁡ ( x ) d x = − cos n − 1 ⁡ ( x ) sin ⁡ ( x ) n + n − 1 n ∫ cos n − 2 ⁡ ( x ) d x + C ( n > 0 ) {\displaystyle\int\cos^{n}(x)\mathrm{d}x=-{\frac{\cos^{n-1}(x)\sin(x)}{n}}+{\frac{n-1}{n}}\int\cos^{n-2}(x)\mathrm{d}x+C\qquad(n>0)}   ∫ tan n ⁡ ( x ) d x = tan n − 1 ⁡ ( x ) ( n − 1 ) − ∫ tan n − 2 ⁡ ( x ) d x + C ( n ≠ 1 ) {\displaystyle\int\tan^{n}(x)\mathrm{d}x={\frac{\tan^{n-1}(x)}{(n-1)}}-\int\tan^{n-2}(x)\mathrm{d}x+C\qquad(n\neq1)}   ∫ sec n ⁡ ( x ) d x = sec n − 1 ⁡ ( x ) sin ⁡ ( x ) n − 1 + n − 2 n − 1 ∫ sec n − 2 ⁡ ( x ) d x + C ( n ≠ 1 ) {\displaystyle\int\sec^{n}(x)\mathrm{d}x={\frac{\sec^{n-1}(x)\sin(x)}{n-1}}+{\frac{n-2}{n-1}}\int\sec^{n-2}(x)\mathrm{d}x+C\qquad(n\neq1)}   ∫ csc n ⁡ ( x ) d x = − csc n − 1 ⁡ ( x ) cos ⁡ ( x ) n − 1 + n − 2 n − 1 ∫ csc n − 2 ⁡ ( x ) d x + C ( n ≠ 1 ) {\displaystyle\int\csc^{n}(x)\mathrm{d}x=-{\frac{\csc^{n-1}(x)\cos(x)}{n-1}}+{\frac{n-2}{n-1}}\int\csc^{n-2}(x)\mathrm{d}x+C\qquad(n\neq1)}   ∫ cot n ⁡ ( x ) d x = − cot n − 1 ⁡ ( x ) n − 1 − ∫ cot n − 2 ⁡ ( x ) d x + C ( n ≠ 1 ) {\displaystyle\int\cot^{n}(x)\mathrm{d}x=-{\frac{\cot^{n-1}(x)}{n-1}}-\int\cot^{n-2}(x)\mathrm{d}x+C\qquad(n\neq1)}   a 2 ∫ x n sin ⁡ ( a x ) d x = n x n − 1 sin ⁡ ( a x ) − a x n cos ⁡ ( a x ) − n ( n − 1 ) ∫ x n − 2 sin ⁡ ( a x ) d x {\displaystylea^{2}\intx^{n}\sin(ax)\mathrm{d}x=nx^{n-1}\sin(ax)-ax^{n}\cos(ax)-n(n-1)\intx^{n-2}\sin(ax)\mathrm{d}x}   a 2 ∫ x n cos ⁡ ( a x ) d x = a x n sin ⁡ ( a x ) + n x n − 1 cos ⁡ ( a x ) − n ( n − 1 ) ∫ x n − 2 cos ⁡ ( a x ) d x {\displaystylea^{2}\intx^{n}\cos(ax)\mathrm{d}x=ax^{n}\sin(ax)+nx^{n-1}\cos(ax)-n(n-1)\intx^{n-2}\cos(ax)\mathrm{d}x}  顯形式編輯 ∫ sin n ⁡ ( x ) d x = − cos ⁡ ( x ) 2 F 1 ( 1 2 , 1 − n 2 ; 3 2 ; cos 2 ⁡ ( x ) ) + C {\displaystyle\int\sin^{n}(x)\mathrm{d}x=-\cos(x)_{2}F_{1}\left({\frac{1}{2}},{\frac{1-n}{2}};{\frac{3}{2}};\cos^{2}(x)\right)+C}   ∫ cos n ⁡ ( x ) d x = − 1 n + 1 s g n ( sin ⁡ ( x ) ) cos n + 1 ⁡ ( x ) 2 F 1 ( 1 2 , n + 1 2 ; n + 3 2 ; cos 2 ⁡ ( x ) ) + C ( n ≠ − 1 ) {\displaystyle\int\cos^{n}(x)\mathrm{d}x=-{\frac{1}{n+1}}\mathrm{sgn}(\sin(x))\cos^{n+1}(x)_{2}F_{1}\left({\frac{1}{2}},{\frac{n+1}{2}};{\frac{n+3}{2}};\cos^{2}(x)\right)+C\qquad(n\neq-1)}   ∫ tan n ⁡ ( x ) d x = 1 n + 1 tan n + 1 ⁡ ( x ) 2 F 1 ( 1 , n + 1 2 ; n + 3 2 ; − tan 2 ⁡ ( x ) ) + C ( n ≠ − 1 ) {\displaystyle\int\tan^{n}(x)\mathrm{d}x={\frac{1}{n+1}}\tan^{n+1}(x)_{2}F_{1}\left(1,{\frac{n+1}{2}};{\frac{n+3}{2}};-\tan^{2}(x)\right)+C\qquad(n\neq-1)}   ∫ csc n ⁡ ( x ) d x = − cos ⁡ ( x ) 2 F 1 ( 1 2 , n + 1 2 ; 3 2 ; cos 2 ⁡ ( x ) ) + C {\displaystyle\int\csc^{n}(x)\mathrm{d}x=-\cos(x)_{2}F_{1}\left({\frac{1}{2}},{\frac{n+1}{2}};{\frac{3}{2}};\cos^{2}(x)\right)+C}   ∫ sec n ⁡ ( x ) d x = sin ⁡ ( x ) 2 F 1 ( 1 2 , n + 1 2 ; 3 2 ; sin 2 ⁡ ( x ) ) + C {\displaystyle\int\sec^{n}(x)\mathrm{d}x=\sin(x)_{2}F_{1}\left({\frac{1}{2}},{\frac{n+1}{2}};{\frac{3}{2}};\sin^{2}(x)\right)+C}   ∫ cot n ⁡ ( x ) d x = − 1 n + 1 cot n + 1 ⁡ ( x ) 2 F 1 ( 1 , n + 1 2 ; n + 3 2 ; − cot 2 ⁡ ( x ) ) + C ( n ≠ − 1 ) {\displaystyle\int\cot^{n}(x)\mathrm{d}x=-{\frac{1}{n+1}}\cot^{n+1}(x)_{2}F_{1}\left(1,{\frac{n+1}{2}};{\frac{n+3}{2}};-\cot^{2}(x)\right)+C\qquad(n\neq-1)}  其中 2 F 1 {\displaystyle{}_{2}F_{1}}  為超幾何函數, s g n {\displaystyle\mathrm{sgn}}  為符號函數。

反三角函數編輯 ∫ d x 1 − x 2 = arcsin ⁡ ( x ) + C {\displaystyle\int{\frac{\mathrm{d}x}{\sqrt{1-x^{2}}}}=\arcsin(x)+C}   ∫ d x a 2 − x 2 = arcsin ⁡ ( x a ) + C ( a ≠ 0 ) {\displaystyle\int{\frac{\mathrm{d}x}{\sqrt{a^{2}-x^{2}}}}=\arcsin\left({\tfrac{x}{a}}\right)+C\qquad(a\neq0)}   ∫ d x 1 + x 2 = arctan ⁡ ( x ) + C {\displaystyle\int{\frac{\mathrm{d}x}{1+x^{2}}}=\arctan(x)+C}   ∫ d x a 2 + x 2 = arctan ⁡ ( x a ) a + C ( a ≠ 0 ) {\displaystyle\int{\frac{\mathrm{d}x}{a^{2}+x^{2}}}={\frac{\arctan\left({\tfrac{x}{a}}\right)}{a}}+C\qquad(a\neq0)}  指數和對數函數編輯 ∫ e x d x = e x + C {\displaystyle\inte^{x}\mathrm{d}x=e^{x}+C}   ∫ e a x d x = e a x a + C ( a ≠ 0 ) {\displaystyle\inte^{ax}\mathrm{d}x={\frac{e^{ax}}{a}}+C\qquad(a\neq0)}   ∫ a x d x = a x ln ⁡ ( a ) + C ( a > 0 , a ≠ 1 ) {\displaystyle\inta^{x}\mathrm{d}x={\frac{a^{x}}{\ln(a)}}+C\qquad(a>0,a\neq1)}   ∫ ln ⁡ ( x ) d x = x ln ⁡ ( x ) − x + C {\displaystyle\int\ln(x)\mathrm{d}x=x\ln(x)-x+C}   ∫ e x sin ⁡ ( x ) d x = e x 2 ( sin ⁡ ( x ) − cos ⁡ ( x ) ) + C {\displaystyle\inte^{x}\sin(x)\mathrm{d}x={\frac{e^{x}}{2}}(\sin(x)-\cos(x))+C}   ∫ e x cos ⁡ ( x ) d x = e x 2 ( sin ⁡ ( x ) + cos ⁡ ( x ) ) + C {\displaystyle\inte^{x}\cos(x)\mathrm{d}x={\frac{e^{x}}{2}}(\sin(x)+\cos(x))+C}  降階公式編輯 ∫ x n e a x d x = 1 a x n e a x − n a ∫ x n − 1 e a x d x {\displaystyle\intx^{n}e^{ax}\mathrm{d}x={\frac{1}{a}}x^{n}e^{ax}-{\frac{n}{a}}\intx^{n-1}e^{ax}\mathrm{d}x}  反三角函數編輯 ∫ arcsin ⁡ ( x ) d x = x arcsin ⁡ ( x ) + 1 − x 2 + C {\displaystyle\int\arcsin(x)\mathrm{d}x=x\arcsin(x)+{\sqrt{1-x^{2}}}+C}   ∫ arccos ⁡ ( x ) d x = x arccos ⁡ ( x ) − 1 − x 2 + C {\displaystyle\int\arccos(x)\mathrm{d}x=x\arccos(x)-{\sqrt{1-x^{2}}}+C}   ∫ arctan ⁡ ( x ) d x = x arctan ⁡ ( x ) − 1 2 ln ⁡ | 1 + x 2 | + C {\displaystyle\int\arctan(x)\mathrm{d}x=x\arctan(x)-{\frac{1}{2}}\ln|1+x^{2}|+C}   ∫ arccsc ⁡ ( x ) d x = x arccsc ⁡ ( x ) + ln ⁡ | x + x 1 − 1 x 2 | + C {\displaystyle\int\operatorname{arccsc}(x)\mathrm{d}x=x\operatorname{arccsc}(x)+\ln\left|x+x{\sqrt{1-{\frac{1}{x^{2}}}}}\right|+C}   ∫ arcsec ⁡ ( x ) d x = x arcsec ⁡ ( x ) − ln ⁡ | x + x 1 − 1 x 2 | + C {\displaystyle\int\operatorname{arcsec}(x)\mathrm{d}x=x\operatorname{arcsec}(x)-\ln\left|x+x{\sqrt{1-{\frac{1}{x^{2}}}}}\right|+C}   ∫ arccot ⁡ ( x ) d x = x arccot ⁡ ( x ) + 1 2 ln ⁡ | 1 + x 2 | + C {\displaystyle\int\operatorname{arccot}(x)\mathrm{d}x=x\operatorname{arccot}(x)+{\frac{1}{2}}\ln|1+x^{2}|+C}  雙曲函數編輯 基本雙曲函數編輯 ∫ sinh ⁡ ( x ) d x = − i ∫ sin ⁡ ( i x ) d x = cos ⁡ ( i x ) + C = cosh ⁡ ( x ) + C {\displaystyle\int\sinh(x)\mathrm{d}x=-i\int\sin(ix)\mathrm{d}x=\cos(ix)+C=\cosh(x)+C}   ∫ cosh ⁡ ( x ) d x = ∫ cos ⁡ ( i x ) d x = − i sin ⁡ ( i x ) + C = sinh ⁡ ( x ) + C {\displaystyle\int\cosh(x)\mathrm{d}x=\int\cos(ix)\mathrm{d}x=-i\sin(ix)+C=\sinh(x)+C}   ∫ tanh ⁡ ( x ) d x = − i ∫ tan ⁡ ( i x ) d x = log ⁡ | cos ⁡ ( i x ) | + C = log ⁡ | cosh ⁡ ( x ) | + C {\displaystyle\int\tanh(x)\mathrm{d}x=-i\int\tan(ix)\mathrm{d}x=\log\left|\cos(ix)\right|+C=\log\left|\cosh(x)\right|+C}  倒數雙曲函數編輯 ∫ c s c h ( x ) d x = i ∫ csc ⁡ ( i x ) d x = log ⁡ | − i tan ⁡ ( i x 2 ) | + C = log ⁡ | tanh ⁡ ( x 2 ) | + C {\displaystyle\int\mathrm{csch}(x)\mathrm{d}x=i\int\csc(ix)\mathrm{d}x=\log\left|-i\tan\left({\frac{ix}{2}}\right)\right|+C=\log\left|\tanh\left({\frac{x}{2}}\right)\right|+C}   ∫ s e c h ( x ) d x = ∫ sec ⁡ ( i x ) d x = 2 a r t a n h ( − i tan ⁡ ( x 2 i ) ) + C = 2 arctan ⁡ ( tanh ⁡ ( x 2 ) ) + C {\displaystyle\int\mathrm{sech}(x)\mathrm{d}x=\int\sec(ix)\mathrm{d}x=2\mathrm{artanh}\left(-i\tan\left({\frac{x}{2}}i\right)\right)+C=2\arctan\left(\tanh\left({\frac{x}{2}}\right)\right)+C}   ∫ c o t h ( x ) d x = i ∫ cot ⁡ ( i x ) d x = log ⁡ | − i sin ⁡ ( i x ) | + C = log ⁡ | sinh ⁡ ( x ) | + C {\displaystyle\int\mathrm{coth}(x)\mathrm{d}x=i\int\cot(ix)\mathrm{d}x=\log\left|-i\sin(ix)\right|+C=\log\left|\sinh(x)\right|+C}  反雙曲函數編輯 ∫ a r s i n h ( x ) d x = x a r s i n h ( x ) − x 2 + 1 + C {\displaystyle\int\mathrm{arsinh}(x)\mathrm{d}x=x\mathrm{arsinh}(x)-{\sqrt{x^{2}+1}}+C}   ∫ a r c o s h ( x ) d x = x a r c o s h ( x ) − x 2 − 1 + C {\displaystyle\int\mathrm{arcosh}(x)\mathrm{d}x=x\mathrm{arcosh}(x)-{\sqrt{x^{2}-1}}+C}   ∫ a r t a n h ( x ) d x = x a r t a n h ( x ) + 1 2 ln ⁡ ( 1 − x 2 ) + C {\displaystyle\int\mathrm{artanh}(x)\mathrm{d}x=x\mathrm{artanh}(x)+{\frac{1}{2}}\ln(1-x^{2})+C}   ∫ a r c s c h ( x ) d x = x a r c s c h ( x ) + | a r s i n h ( x ) | + C {\displaystyle\int\mathrm{arcsch}(x)\mathrm{d}x=x\mathrm{arcsch}(x)+|\mathrm{arsinh}(x)|+C}   ∫ a r s e c h ( x ) d x = x a r s e c h ( x ) + arcsin ⁡ ( x ) + C {\displaystyle\int\mathrm{arsech}(x)\mathrm{d}x=x\mathrm{arsech}(x)+\arcsin(x)+C}   ∫ a r t a n h ( x ) d x = x a r c o t h ( x ) + 1 2 ln ⁡ ( x 2 − 1 ) + C {\displaystyle\int\mathrm{artanh}(x)\mathrm{d}x=x\mathrm{arcoth}(x)+{\frac{1}{2}}\ln(x^{2}-1)+C}  雜項編輯 ∫ | f ( x ) | d x = s g n ( f ( x ) ) ∫ f ( x ) d x {\displaystyle\int|f(x)|\mathrm{d}x=\mathrm{sgn}(f(x))\intf(x)\mathrm{d}x}  ,其中 s g n {\displaystyle\mathrm{sgn}}  為符號函數。

定積分編輯 ∫ [ 0 , 1 ] n ∏ i = 1 n d x i 1 − ∏ i = 1 n x i = ζ ( n ) {\displaystyle\int_{[0,1]^{n}}{\frac{\prod_{i=1}^{n}\mathrm{d}x_{i}}{1-\prod_{i=1}^{n}x_{i}}}=\zeta(n)}  ,其中整數 n > 1 {\displaystylen>1}  , ζ {\displaystyle\zeta}  為黎曼ζ函數。

∫ − ∞ ∞ e − x 2 d x = π {\displaystyle\int_{-\infty}^{\infty}e^{-x^{2}}\mathrm{d}x={\sqrt{\pi}}}   ∫ 0 1 t u − 1 ( 1 − t ) v − 1 d t = β ( u , v ) = Γ ( u ) Γ ( v ) Γ ( u + v ) {\displaystyle\int_{0}^{1}t^{u-1}(1-t)^{v-1}\mathrm{d}t=\beta(u,v)={\frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}}}  ,其中 Γ {\displaystyle\Gamma}  為Γ函數。

∫ 0 ∞ t s − 1 e − t d t = Γ ( s ) {\displaystyle\int_{0}^{\infty}t^{s-1}e^{-t}\mathrm{d}t=\Gamma(s)}   ∫ 0 2 π e u cos ⁡ θ d θ = 2 π I 0 ( u ) {\displaystyle\int_{0}^{2\pi}e^{u\cos\theta}\mathrm{d}\theta=2\piI_{0}(u)}  ,其中 I 0 {\displaystyleI_{0}}  為第一類修正貝索函數。

∫ 0 ∞ sin ⁡ ( x ) x d x = π 2 {\displaystyle\int_{0}^{\infty}{\frac{\sin(x)}{x}}\mathrm{d}x={\frac{\pi}{2}}}  ←導數表 微積分學 積分表 章節導航: 目錄· 預備知識· 極限· 導數· 積分· 極坐標方程與參數方程· 數列和級數· 多元函數微積分· 擴展知識· 附錄 取自「https://zh.wikibooks.org/w/index.php?title=微积分学/积分表&oldid=166293」



請為這篇文章評分?