The NMDA Receptor Antibody Paradox: A Possible Approach ...
文章推薦指數: 80 %
Anti-NMDAR encephalitis is a devastating autoimmune condition characterized by the onset of psychiatric manifestations including psychosis, ... ThisarticleispartoftheResearchTopic UpdateonTranslationalNeuroimmunology-ResearchofISNI2018 Viewall 21 Articles Articles FabienneBrilot TheUniversityofSydney,Australia MariaPiaGiannoccaro UniversityofBologna,Italy KeikoTanaka NiigataUniversity,Japan JennyLinnoila MassachusettsGeneralHospital,HarvardMedicalSchool,UnitedStates Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction TheNMDAReceptor AuthorContributions Funding ConflictofInterest References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData MINIREVIEWarticle Front.Neurol.,03July2020 |https://doi.org/10.3389/fneur.2020.00635 TheNMDAReceptorAntibodyParadox:APossibleApproachtoDevelopingImmunotherapiesTargetingtheNMDAReceptor DeborahYoung1,2* 1MolecularNeurotherapeuticsLaboratory,DepartmentofPharmacologyandClinicalPharmacology,TheUniversityofAuckland,Auckland,NewZealand 2CentreforBrainResearch,TheUniversityofAuckland,Auckland,NewZealand N-methyl-D-aspartatereceptors(NMDAR)playakeyroleinbraindevelopmentandfunction,includingcontributingtothepathogenesisofmanyneurologicaldisorders.ImmunizationagainsttheGluN1subunitoftheNMDARandtheproductionofGluN1antibodiesisassociatedwithneuroprotectiveandseizure-protectiveeffectsinrodentmodelsofstrokeandepilepsy,respectively.WhilstthesedatasuggestthepotentialforthedevelopmentofGluN1antibodytherapy,paradoxicallyGluN1autoantibodiesinhumansareassociatedwiththepathogenesisoftheautoimmunediseaseanti-NMDAreceptorencephalitis.ThisreviewdiscussespossiblereasonsforthedifferentialeffectsofGluN1antibodiesonNMDARphysiologythatcouldcontributetothesephenotypes. Introduction Antibody-basedimmunotherapiesformakeycomponentofthepharmacologicalarsenalfortreatmentofcancer(1),andinflammatorydiseases(2),withprofoundclinicalsuccessachievedfortheseconditions.Monoclonalantibodytherapieshaveseveraldesirableattributesovertraditionalsmallmoleculedrugsincludinglonghalf-livesandhighspecificityforthetargetmoleculardiseasedriverleadingtoreducedoff-targettoxicityandaloweradverseeffectprofile.ThepipelineofimmunotherapiesforcentralnervoussystemdisordersisnotasextensiveandhaslargelybeendominatedbyactiveorpassiveimmunizationapproachesforAlzheimer'sdiseaseandParkinson'sdiseasethataimtomodifydiseaseprogressionbytargetingproteinsimplicatedindiseasepathogenesis(3).Differentstrategieshavebeenemployedincludingusingantibodiestoneutralizetheactionsofputativeneurotoxicproteinspeciesortopromoteclearanceoftheoffendingdiseaseprotein.Clinicaltrialshaveshownsomepromise(4),butmuchworkisstillrequiredtoimprovethetherapeuticefficacyoftheseapproaches. Thepotentialofantibodiestomodulatethefunctionofothermoleculartargetsinthecentralnervoussystem(CNS)fortherapeuticbenefithasnotbeenextensivelyinvestigated.Inthisreview,Iwillprovideanoverviewofourstudiesandthoseofothersexploringthepossibilityofanimmunoprotectiveapproachforneurologicaldiseasesincludingstrokeandepilepsyinvolvingantibody-mediatedtargetingoftheN-methyl-D-aspartate(NMDAR)subclassofglutamatereceptor. TheNMDAReceptor TheNMDARplaysapivotalroleinbraindevelopment,neuronalsurvival,andsynapticplasticityassociatedwithlearningandmemory.Thereceptorisahetero-tetramercomposedoftwoobligatoryGluN1subunitsofwhichthereareeightdistinctsplicevariants,andtwovariablesubunitsfromtheGluN2(GluN2A-2D)orGluN3(GluN3A-3B)subunitfamilies.ThecombinationofGluN1withdifferentGluN2/3familymembersprovidesforthecreationofdiverseNMDARsubtypesvaryingintheirregionaldistributionandfunctionalproperties.ThemajorityofnativeNMDARaretriheteromeric,withGluN1/GluN2A/GluN2Breceptorsbeingthemostcommonsubtypeinforebrainexcitatoryneurons(5). Thesubunitsaretransmembrane-spanningandarrangedtoformanionchannelporethatisgatedinaligand-andvoltage-dependentmanner.TheextracellularregionsofthereceptorresemblingtwoclamshellstructureswithbindingsitesforglutamateontheGluN2subunitandsitesforglycinebindingontheGluN1subunit.Theinteractionbetweenthedistalaminoterminaldomain(ATD)ofthereceptorandotherproteinsregulatesubtype-specificreceptorassemblyandreceptortraffickingandsitesforallostericmodulationofNMDARfunctionarealsofoundintheATD.ThecytoplasmicC-terminusdomainengagesininteractionswithscaffoldproteinsandintracellularmessengersystemsinthepostsynapticdensity. TheimportanceofNMDARinthemaintenanceofphysiologicalbrainfunctionisunderpinnedbyobservationsthatNMDAR-mediatedhypofunctioncausedbyeitherreceptorloss,oraltereddistributionatsynapses,isimplicatedinneurodevelopmental(autismspectrumdisorders)(6)andneuropsychiatricdisorders(schizophrenia)(7).Moreover,excessiveglutamatereleasethatleadstoNMDARoveractivationcontributestoneurodegenerationinacuteorchronicneurodegenerativediseasesincludingAlzheimer'sdisease(8,9).ThecentralityoftheNMDARinthepathophysiologyofabroadrangeofconditionsmakesthesereceptorsanattractivedrugtargetbuthumantrialsofNMDARantagonistsofdifferentcompoundclassesandatdifferentsitesofreceptoractionhavebeendisappointingandareassociatedwithanarrowtherapeuticindexandanunacceptableadverseeffectprofile(10).GreaterinsightintoNMDARfunction,andthediscoverythatsynapticandextrasynapticNMDARmaybedifferentiallylinkedtocellsurvivalvs.celldeathpathways,respectivelyhascontributedtoongoingeffortstodevelopsubunit-selectiveNMDARantagonists.WeakerGluN2B-selectiveblockersthatmaypreferentiallytargetextrasynapticNMDARhaveamuch-improvedside-effectprofileinhumansthanearlygenerationbroadspectrumantagonists(11).OtherapproachestoamplifytheNMDAR-mediatedcellsurvivalsignalingwarrantinvestigation. TheNMDAReceptorasanImmunotherapeuticTarget WepreviouslydescribedanimmunotherapeuticapproachforstrokeandepilepsyinvolvingtargetedvaccinationagainsttheGluN1subunitoftheNMDAR(12).Ratsgeneticallyimmunizedtoexpressafull-lengthGluN1subunitproteindevelopedhigh-titerserumGluN1autoantibodiesandweremoreprotectedinratmodelsoftemporallobeepilepsyandstroke.Systemicinjectionoftheneurotoxinkainatehasbeenusedextensivelytoinduceseizureactivityandapatternofselectiveneuronalcelllossinthehippocampusthatrecapitulatestheneuropathologicalfeaturesobservedinhumantemporallobeepilepsy(13).Wefoundthatfollowingachallengewithkainate,fewerGluN1-vaccinatedrats(22vs.68%control-vaccinatedrats)developedseizuresandofthetwoanimalsthatexperienced45minofprolongedstatusepilepticus,onlyoneshowedevidenceofneuronalcelldeathinthehippocampus.Moreover,inamiddlecerebralarteryocclusionmodelofischaemicstroke,infarctlesionsizesfortheGluN1-vaccinatedanimalsweresignificantlysmallercomparedtothecontrol-vaccinatedanimalsfollowinginfusionofendothelin-1(12).Wedidnotdetectanyevidenceofcell-mediatedimmuneresponsessuggestingtheprotectivephenotypeislikelytobeGluN1antibody-mediated.Moreover,GluN1IgGwasdetectedatlowlevelsinthecerebrospinalfluid(CSF)ofGluN1-vaccinatedratsunderbasalconditionspriortoanyinsultandGluN1antibodiesareboundtoantigensuggestinglow-levelpassageacrossanintactbloodbrainbarrier(BBB)(12).Ithasbeenestimatedthat0.1%ofsystemicIgGareabletotrafficthroughtheBBBintothebrainparenchyma(14).Inindividualanimals,wefoundthatGluN1antibodiesreactedpreferentiallywithafewspecificextracellularepitopesratherthanabroadrangeofepitopes.Toidentifyregionsofimportance,weimmunizedratswithrecombinantGluN1peptidesthatcontributetovariousfunctionaldomainsoftheNMDAR(15).DifferentialeffectsonseizureexpressionandinjurybetweenthedifferentGluN1peptidetreatmentswereobserved.Theseresultsalsoconfirmedtheprotectivephenotypeisnotauniquefeatureoftheimmunizationapproachused.Almostnohippocampalcelldeathwasobservedinratsimmunizedwithapeptideconsistingofaminoacids654–800ofGluN1(GluN1[654–800])despiteextensivekainate-inducedseizuressufficientindurationandintensitytoinduceneuronalcelldeath.Incontrast,ratsimmunizedwithaGluN1peptidecoveringaminoacids21–375(GluN121–375)wasassociatedwithreducedseizureseverityasassessedbya5-pointseizureratingscalefollowingkainatechallengebuthippocampalcelldeathwasclearlyevidentintheserats.Expressionofheatshockprotein70(HSP70)andbrain-derivedneurotrophicfactor(BDNF)proteinwereelevatedby~1.5-foldinthebrainsoftheGluN1[654–800]-vaccinatedanimalsthatwereprotectedagainstneuronalcelldeathcomparedtothecontrolanimals(naïveandHomer1aimmunized)suggestingthatGluN1antibody-mediatedeffectsatNMDARleadstodownstreamupregulationofsignalingpathwayslinkedtocellsurvival.TheseresultsindicatethatGluN1antibodiestospecificfunctionaldomainsoftheNMDARareabletoinduceastateoftolerancetoinsultakintopreconditioningwherebyshort-termexposuretoNMDARantagonists(16,17)orNMDARactivation(18)caninduceastateofresistancetosubsequentinsult. OurstudiessuggestthataGluN1immunotherapycouldhavebroadutilityforarangeofneurodegenerativedisordersbutfurthermechanisticcharacterizationisrequiredtoassessthefeasibilityandsafetyofsuchanapproach.Thisisofcriticalimportanceaswithinthelastdecade,NMDARautoantibodiestargetingtheGluN1subunithavebeenlinkedtothepathogenesisoftheautoimmunediseaseNMDARencephalitis. AutoimmuneDiseasesAssociatedWithNMDARAntibodies Anti-NMDARencephalitisisadevastatingautoimmuneconditioncharacterizedbytheonsetofpsychiatricmanifestationsincludingpsychosis,rapidmemorylossandseizuresandthepresenceofhigh-titerCSFautoantibodiesoftheIgGclassagainsttheGluN1subunit(19–21).Theconditionismoreprevalentinwomen,andassociatedwiththeectopicexpressionofNMDARproteinsinovarianteratomaalthoughtherearealsoaffectedindividualswhodonothavedetectabletumors(21,22).TheclinicalfeaturesinpatientsandanimalmodelsresemblethosecausedbygeneticorpharmacologicalattenuationofNMDARfunction.Indeed,evidencefromstudiesexaminingtheeffectofpatientantibodiesincellandanimalmodelshaveledtothehypothesisthattheclinicalsyndromeisasaresultofNMDARhypofunctionatanetworklevel.PatientGluN1autoantibodiescross-linkNMDARexpressedonculturedneuronsthattriggerstheirlossatthesynapsebyinternalizationatextrasynapticsites.Similarly,cerebroventricularinfusionofpatientNMDARantibodiesintorodentbraindecreasesNMDARexpressionlevelsleadingtoimpairedsynapticplasticitythatisassociatedwithmemorydeficits,anhedonia,depression-likebehavior,andalowseizurethreshold(23–26).DepletedNMDARexpressionisconsistentwithobservationsinpost-mortembrainfromhumanswithanti-NMDARencephalitis(23,24,27).TheeffectsofpatientantibodiesarespecifictoNMDARasnoeffectonexpressionofAMPAreceptorsorothersynapticproteinsarefound(27,28). WhilsttheroleofGluN1autoantibodiesindiseasepathogenesishasbeenthekeyfocus,morerecentlyamousemodelofNMDARencephalitisinvolvingactiveimmunizationwithintactnative-likeNMDARGluN1/GluN2Btetramersembeddedinaliposomescaffoldhasbeendescribedthatrecapitulatesabroaderrangeoffeaturesreminiscentofthatfoundinthehumandisease(29).Immunizedmicedevelopedovertneurologicalsignsincludemarkedhyperactivityandstereotypicmotorfeaturesincludingtightcircling,seizures,andahunchedposture,orlethargyasearlyas4weeks,withnearlyallanimalsshowingabnormalbehaviorsby6weeks.Thiswasassociatedwithinfiltrationofperipheralimmunecellsandneuroinflammationby6weeksassupportedbyincreasedimmunoreactivitytomarkersofplasmacells,CD4-positiveTcells,andCD20-positiveBcells,activatedmicroglia,andastrocytesgliosis.Neuronallosswasrare.SerumautoantibodiesthattargetepitopesonGluN1waspredominantbutreactivitytoGluN2subunitsaswellasapeptidethatlackedtheamino-terminaldomainofGluN1wasalsoobservedbyWesternblotinthemicetestedsuggestingapolyclonalresponsebythetimefulminantsymptomswerepresentat6weeksafterimmunization.ChronicexposureofculturedhippocampalneuronstoserumautoantibodiesreducedNMDARproteinexpressionandassociatedNMDAR-mediatedcurrentswithoutaneffectonsynapsenumbers(29).StudiesofNMDARencephalitisinhumanshasfocusedontheroleoftheautoantibodies,butthisstudysuggeststhatmatureTcellsarealsoinvolvedincausingamorecomplexdiseasepathogenesisleadingtobroaderrepertoireofsymptomsbypromotingneuroinflammationandpotentiatingBcell-andplasmacell–mediatedantibodyresponses.TheuseofconformationallystableNMDARholoproteinsmaybeacriticalcomponentininitiatingamorecomplexpatternofimmunogenicity. TheNMDARAutoantibodyParadox Thepathogeniceffectsinducedbypatientantibodiescontrastsharplytotheprotectivebenefitachievedinourstudiesinrodentmodels.SingleaminoacidsubstitutionsatkeyresidueswithintheextracellularregionsoftheGluN1subunitcansignificantlyaffectchannelpermeability(30),soitisentirelyplausiblethatsite-specifictargetingbyGluN1antibodiestodifferentextracellularregionsontheNMDARcouldhavedifferentialeffectsonreceptorfunctionordistribution.OurobservationsshowingdistinctdifferencesbetweeneffectsonseizureexpressionandneuroprotectiveeffectsfollowingimmunizationwithdifferentGluN1peptidefragmentprovidesupportforthishypothesis(15).Usingalibraryofpeptidesthatspantheentire938aminoacidsofthenativeGluN1subunitasascreeningplatform,wefoundthatGluN1IgGantibodiesfromindividualratsgeneticallyvaccinatedwithGluN1cDNAreactmostcommonlywithpeptidesthatcorrespondtodomainsthatformpartoftheextracellularvestibuleoftheNMDAreceptorchannel,includingregionsimportantforglycinebinding(12).Similarly,wefoundneuroprotectionwasassociatedwithGluN1antibodiestargetingtheGluN1[654–800]regionthatcontributestotheS2loopoftheglycinebindingdomain(15).Wedevelopedarecombinantproteinconsistingoftheextracellularpre-TM1regionthatincludestheamino-terminaldomain(ATD)linkedtotheextracellularloopbetweenTM3-4domainsofGluN1andimmunizedgroupsofratswiththisrecombinantprotein(recGluN1).WefoundthatthehumoralresponsefollowingimmunizationwiththisproteingeneratedGluN1antibodiesthatpreferentiallyreactedwithpeptidesthatcorrespondtodomainsimportantforglycinebindingwhenwescreenedanIgGfractionpurifiedfrompooledratserumagainstourGluN1peptidelibrary.StructuralmodelingpredictsthatthebindingofGluN1antibodytothistargetregionwouldpromoteclosureoftheNMDARionchannel(31). Incontrast,NMDARpatientautoantibodiesrecognizeconformationalepitopesattheGluN-ATD(28).ScreeningofpatientautoantibodiesagainstaseriesofGluN1proteindeletionmutantsshowedaminoacidresiduesN368/G369attheGluN1-ATDwerecrucialforthecreationofreactivityofpatientantibodies.Moreover,patientantibodiesdidnotimmunostainaGluN1proteinlackingtheATD,suggestingthattheseantibodiesdonottargetregionsimportantinglycinebinding(28).TheGluN1-ATDisamajorlocusforinteractionsbetweentheNMDARandvarioussynapticproteinsthatregulatethetrafficking,surfacedistribution,andfunctionofNMDAR(32,33).AnybiologicagentordrugcompoundcapableofmodifyingtheseinteractionscouldhavesignificanteffectsonNMDARsignaling.Mechanistically,NMDARencephalitispatientantibodiesblocktheabilityofEphrinBreceptorstoregulatesynapticNMDARnumbers(33),leadingtotheirdepletionandastateofNMDARhypofunction(20,27,34). Conversely,neuroprotectioninmousemodelsofstrokeandexperimentalautoimmuneencephalitiscanbeproducedusingGluN1antibodiesthattargettheinteractionsiteoftheserineproteasetissueplasminogenactivator(tPA)attheATD(35–37).GluN1antibodiesdirectedagainstanepitopeataminoacids163–192aswellasGlunomab,amonoclonalantibodythatinteractswiththelysineresidueatposition178,blocksthetPA-mediatedpotentiationofNMDAR-mediatedsignalingandexcitotoxicityinneuronsbyreducingthesurfacedynamicsandclusteringofextrasynapticNMDAR(36–39).ThetherapeuticbeneficitengenderedbytheseGluN1antibodiesarenotrestrictedtoactionsatneuronalNMDAR,withGlunomabshowntopromotethemaintenanceofbloodbrainbarrierintegrityviaactionsonNMDARexpressedonendothelialcells(36,37).Ofnote,inourownworkwefoundGluN1antibodiesthatinteractwiththeglycinesiteonNMDARexpressedonplateletscaninhibitplateletfunctionandthrombusformationthatcouldalsocontributetolimitingstroke-inducedneuronaldamage(31)suggestinganytherapeuticbenefitcouldoccurthroughadditiveeffectsatmultiplecellsites.FurtherinvestigationisrequiredtounderstandthefullspectrumofeffectsontherapeuticGluN1antibodiesincludingtheimpactonNMDAR-dependentprocessessuchaslearningandmemory.GluN1-ATDantibodieshavebeenreportedtoimpairhippocampal-dependentspatialmemoryinrodents(35,39,40)althoughalaterstudysuggestedthattheGluN1-ATDantibodiesarenotassociatedwithcognitiveorbehavioraldeficits(36). Altogether,thesedatasuggestthatNMDAreceptorlocation,andfunction,canbedifferentiallymodulatedbyGluN1antibodiesinatarget-dependentmannerwithGluN1immunotherapeuticbenefitmadefeasiblethroughstrategictargetingtodefinedsites.Whatarethechallengesforapplyingsuchanapproach,forexample,asapreventativetreatmentagainststroke-induceddamageinhumans? ChallengesforaGluN1Immunotherapy—theRoleofGluN1AutoantibodiesinHealthandDisease Inpreclinicalstudies,GluN1antibodiesgeneratedfollowingimmunizationofnaïveanimalsarepresumedtobeabletofreelyinteractwiththeirtargetsitefollowingpassageintothebrain.HowthetherapieswouldperforminhumanswithpreexistingserumantibodiesdirectedagainsttheNMDARthatcoulddirectlycompeteforthesameepitopetargets(ifpresentinsufficientquantities),isunknown.SerumGluN1autoantibodiesarefoundinhealthyolderadultsandthereisincreasedseroprevalence(>20%)inindividualsaffectedbyawide-rangeofdiseasesincludingstroke,neuropsychiatricillnesses,anddementia(41–45),witharecentstudysuggestingGluN1autoantibodiesmaybepartofthenormalautoimmunerepertoire(46).Thesignificanceoftheseantibodiesincontributingtofunctionaloutcomesintheseconditionsisanareaofcurrentinvestigation.UnlikeNMDARencephalitisthatisprimarilyassociatedwiththeoccurrenceofIgGGluN1antibodies,GluN1IgA,andIgMantibodiesaremainlyfoundinnon-specificallyinhealthyolderadultsandindiseaseconditions(44,47).TherearecontradictoryreportsthatGluN1antibodiespromoteNMDARinternalizationirrespectiveofimmunoglobulinclassandepitope,whereasothergroupsfindtheseeffectsareonlyproducedbyNMDARencephalitis-associatedGluN1IgGantibodies(44,46,48),suggestingfurtherinvestigationintoanypossiblepathogeniceffectsisrequired. GluN1autoantibodiesinstrokehavebeenassociatedwithlarger(45)aswellasreducedlesionsizesafteracuteischemicstroke(47).ThediscrepancybetweenthesefindingscoulddependantibodytiteraswellasthehealthoftheBBB.UsingapolipoproteinE4(APOE4)carrierstatusasamarkerforaleakyBBB,thepresenceofpreexistingserumGluN1autoantibodiesatthetimeofacuteischemicstrokewasassociatedwithreducedinfarctsizesinindividualswithanintactBBB(APOE4+/+),howeverlesionsizesappearedtobethelargestinAPOE4carrierswithacompromisedBBB(47).WespeculatethesefindingsareinlinewiththeneuroprotectionobservedinrodentstrokemodelswithanintactBBBatthetimeofinsult(12,36).WhetherourglycinebindingsitetargetingGluN1antibodiespromotemaintenanceofBBBintegritylikeGluN1-ATDantibodiesisunknown(37).RecentdatahasindicatedGluN1antibodyseropositivitywasnotassociatedwithanylong-termfunctionalbenefitat1yearfollowingstroke(49)butfurtherstudiesarerequiredtoexaminewhethertherapeuticbenefitsmightbefoundinspecificpatientsubgroupssuchasAPOE4non-carriers. Therearemanyoutstandingquestions.WhetheraGluN1immunotherapycouldcounteractoroverrideanypossiblepathogeniceffectsproducedbyGluN1autoantibodiesorhelpboosttheneuroprotectivecapabilityofendogenousantibodiesatmultiplelevelsincludingmodulatingNMDARsignalingatneurons,maintainingBBBhealth,andfunctionremainstobedetermined. DeliveryChallengesforCNSImmunotherapeutics AnotherkeychallengeiswhethersufficientamountsofantibodyasoneofthekeydrawbacksofimmunotherapiesforCNSdisordersisthelowefficiencyofdeliveryintothebrain.TheBBBstrictlyregulatestheentryofmoleculesincludingtherapeutics,immunecells,andimmunemediatorsfromthesystemiccirculationintoandoutofthebrain.OsmoticorchemicaldisruptionofBBBintegritycanfacilitatedeliveryoftherapeuticsintothebrainbutthelackofspecificityforthetherapeuticbiologicagentisproblematic.AlternativemethodologieshaveexploitedthepropertiesofendogenousBBBreceptor-mediatedtransportersresponsibleforthepassageofendogenouslargemoleculessuchasinsulin,transferrin,insulin-likegrowthfactor,andleptinintothebrain.ThesecirculatingproteinsbindtotheircognatereceptorsontheluminalsurfaceoftheendothelialcellsliningtheBBB.Uponbinding,thereceptor–ligandcomplexisinternalizedintotheendothelialcellbyreceptor-mediatedendocytosiswheretheligandmoleculeistransportedacrosstheabluminalmembraneoftheendothelialcellintothebrain.MolecularTrojanhorsesthatareengineeredtocarrypeptidesorproteinsligandsthattargetreceptormediatedtransportsystems(e.g.,receptor-bindingsequencesofinsulin)ormonoclonalantibodiesthatspecificallytargettransferrinandinsulinreceptorshavebeenshowntobeeffectiveinfacilitatingdeliveryofvarioustherapeuticproteinsintothebrain(50,51).Progressinantibodyengineeringhasledtothegenerationofdifferentantibodyconfigurationsincludingtheartificialbispecificantibodythatcombinetwoantigen-recognizingcomponentsintoasingleconstruct.BispecificantibodiescouldalsoactasscaffoldstodelivertherapeuticantibodiesintothebrainbyincorporatingonearmwithspecificityagainstaBBBreceptor-mediatedtransportreceptorthatfacilitatespassageacrosstheBBBandthetherapeuticarmthatproducesthepharmacologicaleffect(52).Useofthesetechnologiescoupledwithsite-specifictargetingoftheGluN1couldbeexploredinfuturestudiesifrequired. AuthorContributions DYwrotethepaperandconceivedthiswork. Funding ThisworkwasfundedbygrantsfromBrainResearchNZandtheAucklandMedicalResearchFoundation(1113009)toDY. ConflictofInterest Theauthordeclaresthattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. References 1.ScottAM,WolchokJD,OldLJ.Antibodytherapyofcancer.NatRevCancer.(2012)12:278–87.doi:10.1038/nrc3236 PubMedAbstract|CrossRefFullText|GoogleScholar 2.ChanAC,CarterPJ.Therapeuticantibodies0forautoimmunityandinflammation.NatRevImmunol.(2010)10:301–16.doi:10.1038/nri2761 PubMedAbstract|CrossRefFullText|GoogleScholar 3.LemereCA,MasliahE.CanAlzheimerdiseasebepreventedbyamyloid-betaimmunotherapy?NatRevNeurol.(2010)6:108–19.doi:10.1038/nrneurol.2009.219 PubMedAbstract|CrossRefFullText|GoogleScholar 4.SevignyJ,ChiaoP,BussiereT,WeinrebPH,WilliamsL,MaierM,etal.TheantibodyaducanumabreducesabetaplaquesinAlzheimer'sdisease.Nature.(2016)537:50–6.doi:10.1038/nature19323 PubMedAbstract|CrossRefFullText|GoogleScholar 5.StroebelD,CasadoM,PaolettiP.TriheteromericNMDAreceptors:fromstructuretosynapticphysiology.CurrOpinPhysiol.(2018)2:1–12.doi:10.1016/j.cophys.2017.12.004 PubMedAbstract|CrossRefFullText|GoogleScholar 6.LeeEJ,ChoiSY,KimE.NMDAreceptordysfunctioninautismspectrumdisorders.CurrOpinPharmacol.(2015)20:8–13.doi:10.1016/j.coph.2014.10.007 PubMedAbstract|CrossRefFullText|GoogleScholar 7.TsaiG,CoyleJT.Glutamatergicmechanismsinschizophrenia.AnnuRevPharmacolToxicol.(2002)42:165–79.doi:10.1146/annurev.pharmtox.42.082701.160735 PubMedAbstract|CrossRefFullText|GoogleScholar 8.CollingridgeG.Synapticplasticity.TheroleofNMDAreceptorsinlearningandmemory.Nature.(1987)330:604–5.doi:10.1038/330604a0 PubMedAbstract|CrossRefFullText|GoogleScholar 9.LauA,TymianskiM.Glutamatereceptors,neurotoxicityandneurodegeneration.PflugersArch.(2010)460:525–42.doi:10.1007/s00424-010-0809-1 PubMedAbstract|CrossRefFullText|GoogleScholar 10.WaxmanEA,LynchDR.N-methyl-D-aspartatereceptorsubtypes:multiplerolesinexcitotoxicityandneurologicaldisease.Neuroscientist.(2005)11:37–49.doi:10.1177/1073858404269012 PubMedAbstract|CrossRefFullText|GoogleScholar 11.HardinghamGE,BadingH.SynapticversusextrasynapticNMDAreceptorsignalling:implicationsforneurodegenerativedisorders.NatRevNeurosci.(2010)11:682–96.doi:10.1038/nrn2911 PubMedAbstract|CrossRefFullText|GoogleScholar 12.DuringMJ,SymesCW,LawlorPA,LinJ,DunningJ,FitzsimonsHL,etal.AnoralvaccineagainstNMDAR1withefficacyinexperimentalstrokeandepilepsy.Science.(2000)287:1453–60.doi:10.1126/science.287.5457.1453 PubMedAbstract|CrossRefFullText|GoogleScholar 13.Ben-AriY,CossartR.Kainate,adoubleagentthatgeneratesseizures:twodecadesofprogress.TrendsNeurosci.(2000)23:580–7.doi:10.1016/S0166-2236(00)01659-3 PubMedAbstract|CrossRefFullText|GoogleScholar 14.BardF,CannonC,BarbourR,BurkeRL,GamesD,GrajedaH,etal.Peripherallyadministeredantibodiesagainstamyloidbeta-peptideenterthecentralnervoussystemandreducepathologyinamousemodelofAlzheimerdisease.NatMed.(2000)6:916–9.doi:10.1038/78682 PubMedAbstract|CrossRefFullText|GoogleScholar 15.LinEJ,SymesCW,Townsend-NicholsonA,KlugmannM,KlugmannCB,LehnertK,etal.Animmunologicalapproachtoincreasethebrain'sresiliencetoinsults.ISRNNeurosci.(2014)2014:103213.doi:10.1155/2014/103213 PubMedAbstract|CrossRefFullText|GoogleScholar 16.PringleAK,IannottiF,WildeGJ,ChadJE,SeeleyPJ,SundstromLE.NeuroprotectionbybothNMDAandnon-NMDAreceptorantagonistsininvitroischemia.BrainRes.(1997)755:36–46.doi:10.1016/S0006-8993(97)00089-9 PubMedAbstract|CrossRefFullText|GoogleScholar 17.TremblayR,ChakravarthyB,HewittK,TauskelaJ,MorleyP,AtkinsonT,etal.TransientNMDAreceptorinactivationprovideslong-termprotectiontoculturedcorticalneuronsfromavarietyofdeathsignals.JNeurosci.(2000)20:7183–92.doi:10.1523/JNEUROSCI.20-19-07183.2000 PubMedAbstract|CrossRefFullText|GoogleScholar 18.BoeckCR,GanzellaM,LottermannA,VenditeD.NMDApreconditioningprotectsagainstseizuresandhippocampalneurotoxicityinducedbyquinolinicacidinmice.Epilepsia.(2004)45:745–50.doi:10.1111/j.0013-9580.2004.65203.x PubMedAbstract|CrossRefFullText|GoogleScholar 19.DalmauJ,ArmangueT,PlanagumaJ,RadosevicM,MannaraF,LeypoldtF,etal.Anupdateonanti-NMDAreceptorencephalitisforneurologistsandpsychiatrists:mechanismsandmodels.LancetNeurol.(2019)18:1045–57.doi:10.1016/S1474-4422(19)30244-3 PubMedAbstract|CrossRefFullText|GoogleScholar 20.DalmauJ,GleichmanAJ,HughesEG,RossiJE,PengX,LaiM,etal.Anti-NMDA-receptorencephalitis:caseseriesandanalysisoftheeffectsofantibodies.LancetNeurol.(2008)7:1091–8.doi:10.1016/S1474-4422(08)70224-2 PubMedAbstract|CrossRefFullText|GoogleScholar 21.DalmauJ,TuzunE,WuHY,MasjuanJ,RossiJE,VoloschinA,etal.Paraneoplasticanti-N-methyl-D-aspartatereceptorencephalitisassociatedwithovarianteratoma.AnnNeurol.(2007)61:25–36.doi:10.1002/ana.21050 PubMedAbstract|CrossRefFullText|GoogleScholar 22.TitulaerMJ,McCrackenL,GabilondoI,ArmangueT,GlaserC,IizukaT,etal.Treatmentandprognosticfactorsforlong-termoutcomeinpatientswithanti-NMDAreceptorencephalitis:anobservationalcohortstudy.LancetNeurol.(2013)12:157–65.doi:10.1016/S1474-4422(12)70310-1 PubMedAbstract|CrossRefFullText|GoogleScholar 23.PlanagumaJ,HaselmannH,MannaraF,Petit-PedrolM,GrunewaldB,AguilarE,etal.Ephrin-B2preventsN-methyl-D-aspartatereceptorantibodyeffectsonmemoryandneuroplasticity.AnnNeurol.(2016)80:388–400.doi:10.1002/ana.24721 PubMedAbstract|CrossRefFullText|GoogleScholar 24.PlanagumaJ,LeypoldtF,MannaraF,Gutierrez-CuestaJ,Martin-GarciaE,AguilarE,etal.HumanN-methylD-aspartatereceptorantibodiesaltermemoryandbehaviourinmice.Brain.(2015)138:94–109.doi:10.1093/brain/awu310 PubMedAbstract|CrossRefFullText|GoogleScholar 25.WrightS,HashemiK,StasiakL,BartramJ,LangB,VincentA,etal.EpileptogeniceffectsofNMDARantibodiesinapassivetransfermousemodel.Brain.(2015)138:3159–67.doi:10.1093/brain/awv257 PubMedAbstract|CrossRefFullText|GoogleScholar 26.ZhangQ,TanakaK,SunP,NakataM,YamamotoR,SakimuraK,etal.Suppressionofsynapticplasticitybycerebrospinalfluidfromanti-NMDAreceptorencephalitispatients.NeurobiolDis.(2012)45:610–5.doi:10.1016/j.nbd.2011.09.019 PubMedAbstract|CrossRefFullText|GoogleScholar 27.HughesEG,PengX,GleichmanAJ,LaiM,ZhouL,TsouR,etal.Cellularandsynapticmechanismsofanti-NMDAreceptorencephalitis.JNeurosci.(2010)30:5866–75.doi:10.1523/JNEUROSCI.0167-10.2010 PubMedAbstract|CrossRefFullText|GoogleScholar 28.GleichmanAJ,SpruceLA,DalmauJ,SeeholzerSH,LynchDR.Anti-NMDAreceptorencephalitisantibodybindingisdependentonaminoacididentityofasmallregionwithintheGluN1aminoterminaldomain.JNeurosci.(2012)32:11082–94.doi:10.1523/JNEUROSCI.0064-12.2012 PubMedAbstract|CrossRefFullText|GoogleScholar 29.JonesBE,TovarKR,GoehringA,Jalali-YazdiF,OkadaNJ,GouauxE,etal.Autoimmunereceptorencephalitisinmiceinducedbyactiveimmunizationwithconformationallystabilizedholoreceptors.SciTranslMed.(2019)11:eaaw0044.doi:10.1126/scitranslmed.aaw0044 PubMedAbstract|CrossRefFullText|GoogleScholar 30.BeckC,WollmuthLP,SeeburgPH,SakmannB,KunerT.NMDARchannelsegmentsformingtheextracellularvestibuleinferredfromtheaccessibilityofsubstitutedcysteines.Neuron.(1999)22:559–70.doi:10.1016/S0896-6273(00)80710-2 PubMedAbstract|CrossRefFullText|GoogleScholar 31.GreenTN,HamiltonJR,Morel-KoppMC,ZhengZ,ChenTT,HearnJI,etal.InhibitionofNMDAreceptorfunctionwithananti-GluN1-S2antibodyimpairshumanplateletfunctionandthrombosis.Platelets.(2017)28:799–811.doi:10.1080/09537104.2017.1280149 PubMedAbstract|CrossRefFullText|GoogleScholar 32.LauCG,ZukinRS.NMDAreceptortraffickinginsynapticplasticityandneuropsychiatricdisorders.NatRevNeurosci.(2007)8:413–26.doi:10.1038/nrn2153 PubMedAbstract|CrossRefFullText|GoogleScholar 33.NoltMJ,LinY,HruskaM,MurphyJ,Sheffler-ColinsSI,KayserMS,etal.EphBcontrolsNMDAreceptorfunctionandsynaptictargetinginasubunit-specificmanner.JNeurosci.(2011)31:5353–64.doi:10.1523/JNEUROSCI.0282-11.2011 PubMedAbstract|CrossRefFullText|GoogleScholar 34.MikasovaL,DeRossiP,BouchetD,GeorgesF,RogemondV,DidelotA,etal.Disruptedsurfacecross-talkbetweenNMDAandephrin-B2receptorsinanti-NMDAencephalitis.Brain.(2012)135:1606–21.doi:10.1093/brain/aws092 PubMedAbstract|CrossRefFullText|GoogleScholar 35.BenchenaneK,CastelH,BoulouardM,BlutheR,Fernandez-MonrealM,RousselBD,etal.Anti-NR1N-terminal-domainvaccinationunmasksthecrucialactionoftPAonNMDA-receptor-mediatedtoxicityandspatialmemory.JCellSci.(2007)120:578–85.doi:10.1242/jcs.03354 PubMedAbstract|CrossRefFullText|GoogleScholar 36.MacrezR,ObiangP,GaubertiM,RousselB,BaronA,ParcqJ,etal.Antibodiespreventingtheinteractionoftissue-typeplasminogenactivatorwithN-methyl-D-aspartatereceptorsreducestrokedamagesandextendthetherapeuticwindowofthrombolysis.Stroke.(2011)42:2315–22.doi:10.1161/STROKEAHA.110.606293 PubMedAbstract|CrossRefFullText|GoogleScholar 37.MacrezR,OrtegaMC,BardouI,MehraA,FournierA,VanderPolSM,etal.NeuroendothelialNMDAreceptorsastherapeutictargetsinexperimentalautoimmuneencephalomyelitis.Brain.(2016)139:2406–19.doi:10.1093/brain/aww172 PubMedAbstract|CrossRefFullText|GoogleScholar 38.LeseptF,ChevilleyA,JezequelJ,LadepecheL,MacrezR,AimableM,etal.Tissue-typeplasminogenactivatorcontrolsneuronaldeathbyraisingsurfacedynamicsofextrasynapticNMDAreceptors.CellDeathDis.(2016)7:e2466.doi:10.1038/cddis.2016.279 PubMedAbstract|CrossRefFullText|GoogleScholar 39.NicoleO,DocagneF,AliC,MargaillI,CarmelietP,MacKenzieET,etal.Theproteolyticactivityoftissue-plasminogenactivatorenhancesNMDAreceptor-mediatedsignaling.NatMed.(2001)7:59–64.doi:10.1038/83358 PubMedAbstract|CrossRefFullText|GoogleScholar 40.Fernandez-MonrealM,Lopez-AtalayaJP,BenchenaneK,CacquevelM,DulinF,LeCaerJP,etal.Arginine260oftheamino-terminaldomainofNR1subunitiscriticalfortissue-typeplasminogenactivator-mediatedenhancementofN-methyl-D-aspartatereceptorsignaling.JBiolChem.(2004)279:50850–6.doi:10.1074/jbc.M407069200 PubMedAbstract|CrossRefFullText|GoogleScholar 41.BusseS,BrixB,KunschmannR,BogertsB,StoeckerW,BusseM.N-methyl-d-aspartateglutamatereceptor(NMDA-R)antibodiesinmildcognitiveimpairmentanddementias.NeurosciRes.(2014)85:58–64.doi:10.1016/j.neures.2014.06.002 PubMedAbstract|CrossRefFullText|GoogleScholar 42.DahmL,OttC,SteinerJ,StepniakB,TeegenB,SaschenbreckerS,etal.Seroprevalenceofautoantibodiesagainstbrainantigensinhealthanddisease.AnnNeurol.(2014)76:82–94.doi:10.1002/ana.24189 PubMedAbstract|CrossRefFullText|GoogleScholar 43.DossS,WandingerKP,HymanBT,PanzerJA,SynofzikM,DickersonB,etal.HighprevalenceofNMDAreceptorIgA/IgMantibodiesindifferentdementiatypes.AnnClinTranslNeurol.(2014)1:822–32.doi:10.1002/acn3.120 PubMedAbstract|CrossRefFullText|GoogleScholar 44.HaraM,Martinez-HernandezE,ArinoH,ArmangueT,SpatolaM,Petit-PedrolM,etal.ClinicalandpathogenicsignificanceofIgG,IgA,andIgMantibodiesagainsttheNMDAreceptor.Neurology.(2018)90:e1386–94.doi:10.1212/WNL.0000000000005329 PubMedAbstract|CrossRefFullText|GoogleScholar 45.Kalev-ZylinskaML,SymesW,LittleKC,SunP,WenD,QiaoL,etal.StrokepatientsdevelopantibodiesthatreactwithcomponentsofN-methyl-D-aspartatereceptorsubunit1inproportiontolesionsize.Stroke.(2013)44:2212–9.doi:10.1161/STROKEAHA.113.001235 PubMedAbstract|CrossRefFullText|GoogleScholar 46.PanH,OliveiraB,SaherG,DereE,TapkenD,MitjansM,etal.Uncouplingthewidespreadoccurrenceofanti-NMDAR1autoantibodiesfromneuropsychiatricdiseaseinanovelautoimmunemodel.MolPsychiatry.(2019)24:1489–501.doi:10.1038/s41380-017-0011-3 PubMedAbstract|CrossRefFullText|GoogleScholar 47.ZercheM,WeissenbornK,OttC,DereE,AsifAR,WorthmannH,etal.PreexistingserumautoantibodiesagainsttheNMDARsubunitNR1modulateevolutionoflesionsizeinacuteischemicstroke.Stroke.(2015)46:1180–6.doi:10.1161/STROKEAHA.114.008323 PubMedAbstract|CrossRefFullText|GoogleScholar 48.Castillo-GomezE,OliveiraB,TapkenD,BertrandS,Klein-SchmidtC,PanH,etal.AllnaturallyoccurringautoantibodiesagainsttheNMDAreceptorsubunitNR1havepathogenicpotentialirrespectiveofepitopeandimmunoglobulinclass.MolPsychiatry.(2017)22:1776–84.doi:10.1038/mp.2016.125 PubMedAbstract|CrossRefFullText|GoogleScholar 49.SperberPS,SiegerinkB,HuoS,RohmannJL,PiperSK,PrussH,etal.Serumanti-NMDA(N-methyl-D-aspartate)-receptorantibodiesandlong-termclinicaloutcomeafterstroke(PROSCIS-B).Stroke.(2019)50:3213–9.doi:10.1161/STROKEAHA.119.026100 PubMedAbstract|CrossRefFullText|GoogleScholar 50.PardridgeWM.Re-engineeringbiopharmaceuticalsfordeliverytobrainwithmoleculartrojanhorses.BioconjugChem.(2008)19:1327–38.doi:10.1021/bc800148t PubMedAbstract|CrossRefFullText|GoogleScholar 51.PardridgeWM.Blood-brainbarrierdrugdeliveryofIgGfusionproteinswithatransferrinreceptormonoclonalantibody.ExpertOpinDrugDeliv.(2015)12:207–22.doi:10.1517/17425247.2014.952627 PubMedAbstract|CrossRefFullText|GoogleScholar 52.StanimirovicD,KemmerichK,HaqqaniAS,FarringtonGK.Engineeringandpharmacologyofblood-brainbarrier-permeablebispecificantibodies.AdvPharmacol.(2014)71:301–35.doi:10.1016/bs.apha.2014.06.005 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:GluN1,immunotherapy,NMDAreceptor,neuroprotection,stroke,epilepsy Citation:YoungD(2020)TheNMDAReceptorAntibodyParadox:APossibleApproachtoDevelopingImmunotherapiesTargetingtheNMDAReceptor.Front.Neurol.11:635.doi:10.3389/fneur.2020.00635 Received:30November2019;Accepted:28May2020;Published:03July2020. Editedby:FabienneBrilot,UniversityofSydney,Australia Reviewedby:KeikoTanaka,NiigataUniversity,JapanJennyLinnoila,MassachusettsGeneralHospital,UnitedStatesMariaPiaGiannoccaro,UniversityofBologna,Italy Copyright©2020Young.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:DeborahYoung,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>
延伸文章資訊
- 1Anti-NMDAR encephalitis
Anti-NMDA receptor (NMDAR) encephalitis is the most common type of autoimmune encephalitis (AE), ...
- 2Anti–N-Methyl-D-Aspartate Receptor (NMDAR) Encephalitis in ...
Anti-NMDAR encephalitis is a recently described disorder that appears to be mediated by antibodie...
- 3The NMDA Receptor Antibody Paradox: A Possible Approach ...
Anti-NMDAR encephalitis is a devastating autoimmune condition characterized by the onset of psych...
- 4NMDAR antibody encephalitis
- 5Anti-N-methyl-d-aspartate receptor encephalitis - NCBI
Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is a form of encephalitis occurring primar...