聲音總是慢一拍?無線耳機的致命傷「藍牙延遲」是怎麼回事?

文章推薦指數: 80 %
投票人數:10人

最知名的例子就是,在Apple生態系之下,iOS系統連接蘋果的藍牙耳機AirPods Pro,經過優化的結果,就要比一般藍牙耳機透過AAC 連接iOS 延遲還要低上許多。

因此加入「優化AAC ... 000文字分享友善列印000科學傳播聲音總是慢一拍?無線耳機的致命傷「藍牙延遲」是怎麼回事?鳥苷三磷酸(PanSciPromo)・2020/09/18・3365字・閱讀時間約7分鐘・SR值515・六年級+追蹤本文由量子音樂委託,泛科學企劃執行文/YCWANG「玩射擊遊戲先看到火光,才聽到槍聲,還沒來得及反應就死了!」、「玩太鼓達人聲音和畫面不同步,玩得好痛苦!」你也曾有過類似的經驗嗎?常使用藍牙耳機的人,可能會遇到「藍牙延遲」影音不同步的情況。

圖/Pexels習慣使用藍牙耳機的人,對於「藍牙延遲」大約都不陌生。

到底為什麼藍牙耳機會有聲音延遲的問題?隨著技術的進步,又有什麼新的方法能減少這個潛在惱人的困擾?挑選耳機,怎樣才能符合自己的需求?泛科學這次訪問量子音樂創辦人蔡明耀(Hikari),請專家來一一解釋什麼是藍牙延遲,並對於不同屬性的用戶挑選最適合自己的藍牙耳機,提出一些建議。

聲音延遲……為什麼專業音樂人無法忍受?「延遲會遇到的狀況其中一項是回音,你在錄podcast時,會聽到,HiHikari,然後馬上又再有回音HiHikari。

」量子音樂的Hikari也是一名混音師,他每天工作的日常除了音樂製作、聲音系統還有人工智慧的研發。

他表示,在工作上對於聲音的傳輸,需要嚴苛要求「低延遲」,尤其是在錄音室中,錄音要求延遲在30毫秒以下。

目前大多錄音室都採用數位設備,數位設備較有機會造成延遲回聲等效果,無論是歌手錄音或podcast製作上,均難以接受明顯的聲音延遲。

不過,除非經過特殊訓練,否則一般人耳僅能辨別出60毫秒以上的延遲。

相較於數位設備,類比器材的速度較快也不會造成延遲,但目前在聲音的編輯處理上,時常需要轉數位化,這也就是造成延遲的開始。

為何類比較不會有延遲的問題?類比音訊的輸出與輸入是透過線來傳輸,不需要經過類比、數位的轉換。

但類比雖然速度快,在聲音調控上就完全要靠類比電路,操作不易,目前為了聲音編輯,大部分的聲音處理也主要採數位化,缺點就是有延遲的可能。

藍牙耳機延遲問題究竟可以如何改善?其實除了Hikari提到在音樂製作上專業上不容出現的聲音延遲,在玩遊戲或看電影的時候,「看到火光之後慢半拍才聽到『砰!』」應該是選用藍牙耳機或喇叭的人都有過的經驗。

為什麼使用藍牙的音響系統,會有這種延遲問題呢?藍牙延遲簡單來說就是:「當藍牙訊號開始傳輸,到接收端收到訊號的時間差」。

藍牙是無線傳輸,聲音源透過「藍牙立體聲音訊傳輸協議」(AdvancedAudioDistributionProfile,A2DP)來傳輸訊號,並只能在有限的頻寬下,透過編碼壓縮的方式傳遞音樂訊號,而藍牙接收端(耳機、喇叭裝置)接收訊號後,便會解壓縮藍牙訊號、轉成數位音訊,最後再輸出給裝置上的DAC(數位類比轉換器),然後聲音就會傳到我們的耳朵裡了。

這段音訊訊號傳輸的過程所產生的時間差,便是所謂的藍牙延遲。

圖/泛科學製藍牙透過A2DP協議來傳輸訊號,一開始是以「能聽到不斷續聲音」而設計。

為了避免遭到干擾,藍牙預備了一個的緩衝區(buffer),一個傳出一個接收,如果中間有斷音、不連續,就可以用緩衝丟出音訊,也因此而有延遲。

但隨著藍牙耳機用途越來越廣泛,不再像過去只用在通話上時,藍牙延遲問題就需要被改善。

這也是藍牙耳機難以應用於製作音樂、錄音、電競產業的主要原因。

藍牙耳機不再像過去只用在通話上,藍牙延遲問題需要被改善才能被廣泛運用。

圖/Pexels其實,像是Netflix或YouTube串流影片有調整延遲的協定,也就是設計當聲音變慢了,畫面也一起變慢,藉由「一起延遲」來解決影音不同步問題。

然而,這樣的設計無法應用於電玩,因為遊戲的影像是即時生成,聲音馬上就出來了,因此延遲的問題就較為棘手。

那要怎麼讓藍牙延遲不要這麼嚴重呢?改善的做法之一,在於改進通訊設計。

過去藍牙的兩個耳機是兩個藍牙裝置,由裝置傳到A耳機(主要耳機),再傳到B耳機(副耳機)會造成二段延遲。

為了解決二段延遲問題,先是將雙邊耳機都設計成可以跟系統溝通的主要耳機,再用Sniff(監聽)到通訊協定的作法,緩衝就不用設計的那麼長,能降低延遲、縮短傳輸的時間。

一般藍牙耳機傳送訊號方式是,由主要耳機接收訊號,再傳遞給另一個耳機;目前也有技術是將藍牙左右耳機都設為主要耳機,耳機可以視情況選擇左耳或右耳當主要耳機。

除了以此增加效率,還可以加入「監聽」(Sniff,虛線部分)功能,讓另一支耳機能攔截訊號,使訊號不需要繞過頭部來傳輸,降低延遲。

圖/泛科學製優化後就不一樣!藍牙低延遲排行公開除了優化通訊設計,要改善藍牙延遲的問題,可以調整的細節很多,包括優化傳輸編碼以及天線、晶片優化等各項調整,就有機會維持可接受的音質,並有效改善延遲情況。

挑選藍牙耳機時,最常出現的討論當然還包括傳輸編碼的選擇。

藍牙傳輸的編碼,主要可分為四種常見規格:SBC、AAC、aptX、LDAC。

在數據的封包傳輸量上,一般來說,SBCaptXLL>AAC>aptX。

圖/Pexels再來,討論音質的部分。

影響音質的因素很多,耳機的整體配置都會有所影響,包括耳機共鳴體、驅動單體、組件搭配……等,再加上考慮到使用情境,若大多聽KKBOX、Spotify、YouTube等串流音樂,「優化AAC」在音質與降低延遲取得平衡可以有很不錯的成效,提供使用者最佳的體驗。

怎麼選擇藍牙耳機?便利性、環繞音、低延遲討論到最後,我們問到混音師Hikari對於藍牙耳機音質的評價,他坦率表示曾實際測試多款耳機。

現有的藍牙耳機對專業混音師來說,完全難以達到工作所需要的音質,但他個人並不排斥在生活中使用。

在通勤等生活情境中,藍牙耳機的「方便性」是他最在意的優點之一。

對一般消費者來說,選擇耳機主要要考量喜歡聽哪種頻率的音樂,例如中頻很好的耳機,拿來聽蔡琴的聲音很理想,但拿來打遊戲可能就聽不到敵方腳步聲的聲音。

對Hikari來說,選擇合適的耳機,跟使用情境與慣聽的音樂屬性有很大的關聯,對想一邊舒適地聽音樂、又可以通話,甚至想要輕鬆玩遊戲的人來說,無線藍牙耳機肯定是最好的選擇啦。

以下是他的推薦名單,如果你也有各種心頭好,也不妨推薦給我們吧!Hikari推薦耳機名單注重隔音、主動降噪(ANC),想隔絕外部噪音:AirpodsPro、SonyWH-1000XM4注重中低頻響應,適合電音、Dubstep聆聽且具備情境切換功能:jlabjbudsairexecutive低價但擁有不錯音質的超高CP值耳機:pamuscrollplus錄音與音樂製作,或是想要發燒耳機品質:SonyMDR-900ST、BEYERDYNAMICDT1770pro(所有藍牙耳機都不適合,請乖乖用類比耳機)參考資料想了解藍牙音源解碼必看文章|SBC、AAC、aptX、LDAC秒懂8大無線耳機傳輸速度公開數感宇宙探索課程,現正募資中!相關標籤:AACAirPodsaptXaptXLLbluetoothLDACSBC低延遲真無線藍牙耳機藍牙耳機熱門標籤:大麻量子力學CT值女科學家後遺症文章難易度剛好太難所有討論 0登入與大家一起討論鳥苷三磷酸(PanSciPromo)133篇文章・ 259位粉絲+追蹤充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:[email protected]相關文章泰瑞的顏色是真的!?——鴨嘴獸的生物螢光衣服速速乾——夏天曬衣中的科學!BioNTech如何完成全球第一支COVID-19疫苗?——《光速計畫》書評認識「瀰漫性大B細胞淋巴瘤」,當心身體6大警訊TRENDING熱門討論即時熱門解開古代魚類耳朵裡的「石頭」秘密!專訪古生物學家林千翔11小時前機器學習×鈣鈦礦材料:讓AI設計太陽能電池!41小時前【2003諾貝爾化學獎】細胞膜的分子通道11小時前物聯網世代資安保護的熱門選擇——新型「加密金鑰」PUF技術11小時前科學宅的戀愛契機:「同類交配」理論624小時前思考別人沒有想到的東西——誰發現量子力學?52022/06/03時間是甚麼?國內物理學家與哲學家怎麼看?45天前一生可以聆聽的聲音總量是註定的?戴上你的聽力計算機!32022/05/21474文字分享友善列印474化學物語能源動力電腦資訊機器學習×鈣鈦礦材料:讓AI設計太陽能電池!研之有物│中央研究院・2022/03/09・6280字・閱讀時間約13分鐘+追蹤本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

採訪撰文|簡克志美術設計|林洵安機器學習輔助材料設計為了2050淨零排放的目標,太陽能發電為不可或缺的再生能源之一,其中「鈣鈦礦太陽能電池」是近年最熱門的研究領域,不僅成本低廉、光電轉換效率也可達到25%。

然而,鈣鈦礦材料在環境中容易降解,影響使用壽命。

材料科學家為了做出效能好又穩定的鈣鈦礦「料理」,無不卯足了勁,替這道菜加上各種「食材」,但是越複雜的菜,調出好味道就越困難。

人腦畢竟有限,如果交給機器呢?中央研究院「研之有物」專訪院內應用科學研究中心包淳偉研究員,他與團隊訓練了一套機器學習模型,可以又快又準的找出複雜鈣鈦礦材料的最佳化條件!「鈣鈦礦太陽能電池」是近年最熱門的研究領域,不僅成本低廉、光電轉換效率也可達到25%。

圖/WikimediaCommons光電好夥伴:複雜鈣鈦礦材料對太陽能電池來說,鈣鈦礦材料具有優異的光電性質和低生產成本,近年也廣泛應用在LED、雷射、光感測器和光觸媒。

鈣鈦礦是什麼呢?最初是指鈣與鈦的氧化物CaTiO3,而現在常講的「鈣鈦礦材料」為一種統稱,泛指擁有相似結構的金屬鹵化物材料,通式為ABX3。

要調配出優秀的鈣鈦礦材料並不容易,科學家必須像大廚一樣,運用各種「食材」煮出ABX3。

鈣鈦礦材料ABX3 的結構示意圖,同一個位置可以放入不同的相應元素。

資料來源/JournalofEnergyChemistry鈣鈦礦材料 ABX3 的「食材」有哪些?A的位置:可放入+1價的有機或無機陽離子,例如甲胺(CH3NH3+,簡稱MA)、甲脒(HC(NH2)2+,簡稱FA)或銫離子(Cs+)。

B的位置:可放入+2價的無機金屬陽離子,通常是鉛離子(Pb2+)。

X的位置:可放入-1價的鹵素陰離子,如碘(I–)、溴(Br–)、或氯(Cl–)離子。

由於鈣鈦礦材料在環境中容易降解、影響使用壽命。

研究發現,添加多種有機和無機離子的鈣鈦礦太陽能電池可大幅提升性能和穩定性,因此科學家為了調配出最好的鈣鈦礦材料,加料不手軟,成份也愈來愈複雜。

在眾多複雜鈣鈦礦材料中,包淳偉研究員探討的是 MAyFA1−yPb(BrxI1−x)3 ,下標符號y和1-y表示相對含量,如果MA佔60%、FA就是40%,因為MA和FA會競爭同一個位置;同理Br和I亦然。

圖片為鈣鈦礦材料通式ABX3 對應到混合離子鈣鈦礦材料MAyFA1−yPb(BrxI1−x)3 之示意圖。

圖/研之有物問題來了,MAyFA1−yPb(BrxI1−x)3 這個材料這麼複雜,比例要怎麼配比較好呢?「你累積的經驗越多,你就猜得越準」,包淳偉說道。

2016年曾經有國外團隊為了找出離子濃度配方與 MAyFA1−yPb(BrxI1−x)3 元件性能的關係,不惜花重本「土法煉鋼」,分別將兩組相對含量7等分(0,1/6,2/6,3/6,4/6,5/6,1),做出49種不同的鈣鈦礦太陽能電池,再去測量光電轉換效率,得出最佳比例為MA2/6FA4/6Pb(Br1/6I5/6)3 。

然而,爲何這樣的濃度配方可以得到最佳元件呢?很遺憾的,實驗團隊由於實驗表徵手段的限制,並不能解答這個重要的基礎問題。

因此,實驗團隊仍然需要學生們焚膏繼晷地爆肝,用試誤法(trialanderror)把最佳配方「踹」(try)出來。

國外團隊為了找到MAyFA1−yPb(BrxI1−x)3 最佳比例,做出49種不同的鈣鈦礦太陽能電池,黃框處即為最佳比例。

左圖為相應濃度的元件外觀,右圖為相應濃度的材料表面微結構。

資料來源/Energy&EnvironmentalScience不過,一直反覆試誤並非好方法,畢竟每做一次實驗就是一次成本。

因此,科學家也設法從理論模擬著手,包淳偉強調「模擬的好處是可以在電腦空間中創造一個最純淨的系統。

」,而原子尺度模擬,更可以達到原子級的解析度,提供許多實驗無法量測的資訊。

要如何模擬一個材料系統?材料科學注重製程(Process)、性質(Property)和結構(Structure)之間的關係。

當我們對結構不夠瞭解時,往往只能透過不同的製程參數,慢慢做出我們想要的性質,可能在失敗多次之後,才能抓到一些訣竅。

理論模擬幫助科學家在做出樣品之前,先建立能量模型,找出能量最低、最穩定的微結構。

當我們了解結構之後,可以避免有問題的製程參數設定,進而得到較好的材料性質。

首先,如果要知道材料性質,有個最精準也最耗時的方法:「第一原理計算」,只用量子力學原理,從頭開始把原子間的作用力和能量計算出來。

因為計算繁瑣,應用上只能模擬1奈米以內(10-9 公尺)的三維材料,抓到數個皮秒(10-12 秒)內的原子狀態,若再往外擴展所耗費的時間和成本難以想像。

相對地,計算材料性質也有省時省力的方法:「分子動力學模擬」,運用古典的牛頓力學,搭配統計力學去計算系統的微觀結構和能量。

分子動力學模擬大約可以模擬100奈米內的三維材料,抓到數個微秒(10-6 秒)內的原子狀態,可模擬的系統尺寸和時間都比第一原理計算要來得多!可惜準確度對於現在化學組成高度複雜的新穎材料而言是一個極大的挑戰。

有沒有一種方法,可以做到又快又準呢?有有有!它就是近年大熱門的「機器學習」!圖/研之有物第一原理計算僅適合用在1奈米以內尺度,計算準確耗時;分子動力學模擬可用於100奈米尺度,計算省時卻不夠精準;透過機器學習建立的神經網路模型,可以快速模擬100奈米尺度的材料,也保留高準確度。

資料來源/包淳偉時間就是金錢,請愛用機器學習!當包淳偉看到2016年國外團隊的 MAyFA1−yPb(BrxI1−x)3 鈣鈦礦研究之後,他認為「結構」這塊還有很多地方可以討論,如果透過理論模擬,先找出最低能量的微結構,或許就能更有效率地探索離子濃度空間,找出決定最佳配方的關鍵要素!由於第一原理計算和分子動力學模擬都不夠好用,包淳偉就將念頭轉到近年熱門的「機器學習」,他和團隊就先從簡單的PbI2 開始,慢慢做到複雜的鈣鈦礦材料。

一開始包淳偉的團隊使用布朗大學開發的原子尺度機器學習套件(AtomisticMachine-learningPackage,AMP)來進行訓練與測試,然而,由於AMP套件性能無法達到預期,包淳偉團隊就走上了自行開發機器學習分子動力學模擬程式的不歸路。

訓練神經網路模型時,包淳偉採用第一原理計算的結果當作機器學習素材,並設計函數進行反饋校正,直到預測的原子能量誤差遠小於熱擾動。

這套神經網路模型如何運作?先輸入原子座標(位置向量 r),再換算成「原子指紋」(特徵向量 G,表示該原子與其他原子之間獨一無二的相對關係),之後透過神經網路,快速輸出整個材料系統的原子能量和作用力。

從輸入到輸出,要模擬原子走一個步階(註1)有多快?假設以2000顆原子的計算量來看,自行開發的機器學習方法只要約0.1秒,第一原理計算則要花費3小時,足足快了十萬倍(註2)!包淳偉與團隊成功訓練出可以模擬複雜鈣鈦礦材料系統的神經網路模型。

資料來源/包淳偉此神經網路模型可以準確預測MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的系統能量和受力。

縱軸表示包淳偉團隊的神經網路模型模擬結果,橫軸表示第一原理計算結果。

資料來源/包淳偉AI告訴我們什麼?包淳偉團隊成功訓練出來的神經網路模型,可以在2,000顆原子左右的材料系統上進行數百萬種可能的原子排列採樣,並計算出複雜鈣鈦礦材料的最低能量結構,模擬出不同原子在材料中最穩定的位置、它們的振動,以及它們受到擠壓時會怎麼跑。

多虧了神經網路的快速計算,即使是 MAyFA1−yPb(BrxI1−x)3 這麼複雜的系統也能處理,跑了將近1百萬次結構模擬,得出不同成份比例下81種最低能量的微結構(如下圖),這是第一原理計算絕對跑不出來的成果。

MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的最低能量原子結構,縱軸y為MA濃度(CMA,從MA0-FA1到MA1-FA0),橫軸x為Br濃度(CBr,從Br0-I1 到Br1-I0),各自9等分。

為求圖片簡潔,省略x,y=0或1的結構圖。

資料來源/包淳偉找出系統最低能量的原子組態還不夠,包淳偉團隊想要進一步檢驗鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 是否能穩定地保持混合狀態,因此計算不同濃度成份下的離子混合能Emix(如下圖)。

混合能是負的,表示系統會傾向混合在一起,這也是材料學家想要的微結構,系統會維持單一固溶相,原子和原子之間「和平共處」。

混合能是正的,表示系統會傾向分離成不同成分的「相」(Phase),材料不能保持穩定的混合狀態,會析出相異固溶相,產生許多缺陷。

MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的混合能Emix分布,藍色表示混合能為負(維持單一固溶相),紅色表示混合能為正(析出相異固溶相),可以看到Br和MA濃度高的時候,容易析出化合物。

其中,縱軸y為MA濃度(CMA),橫軸x為Br濃度(CBr)。

資料來源/包淳偉從 MAyFA1−yPb(BrxI1−x)3 混合能分布初步來看,Br濃度(CBr)或MA濃度(CMA)越高的時候,混合能就越高,系統越容易析出相異的固溶相。

除了混合能之外,研究團隊更進一步檢驗了不同濃度成份下的其他結構參數,例如短程有序參數αA-B(正值表示A-B析出;負值表示A-B混合)、晶格扭曲ηs(shearstrain)與晶格畸變ηv(volumetricstrain),觀察析出化合物時,是否真的會改變晶格的幾何結構。

為了將模擬結果和實際情況對照,包淳偉再將模擬出來的結構以第一原理計算出不同濃度成份下的材料能隙(Eg),以及用內差法比對2016年國外團隊的實驗數據,得出不同濃度成份下的元件短路電流(Jsc)和光電轉換效率(powerconversionefficiency,PCE)。

有了這些關鍵數據,我們終於可以完成鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 優化製程參數的最後一哩路!鈣鈦礦材料設計最佳化!還記得我們一開始跑模擬的目標嗎?幫助研究團隊在花大錢做實驗之前,先找出最穩定的結構,從結構參數回推好的製程參數,進而得到較好的材料性質。

那麼要如何把這麼多參數的相關性一網打盡呢?有個好工具叫「皮爾森相關性矩陣」(Pearsoncorrelationmatrix)。

MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料透過機器學習方法模擬之後,計算出性質參數(Eg、Jsc、PCE)、結構參數(Emix、α、ηs、ηv)與製程參數(CMA、CBr)與之間的相關性。

其中,r為相關係數,紅色正值表示兩者正相關,藍色負值表示兩者負相關。

資料來源/包淳偉上圖的矩陣整合了結構參數、製程參數與性質參數的相關性。

這張表格要怎麼解讀呢?首先看結構參數,混合能(Emix)越高,晶格扭曲(ηs)程度越大,MA和FA不互溶,Br和I也不互溶,鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 不能保持穩定的混合狀態。

再來看製程參數和結構參數,Br的濃度(CBr)和MA的濃度(CMA)越高,晶格扭曲明顯增加,使得混合能越高。

尤其是Br,Br加得越多,MA和FA不互溶,Br和I也不互溶,容易析出其他固體相,在材料中引入缺陷。

最後看性質參數與結構參數,會發現混合能越高,光電轉換效率(PCE)和元件短路電流(Jsc)越差。

因此,如果要提升光電轉換效率,必須降低Br和MA的摻雜濃度來減少晶格扭曲,以降低混合能,使得MA和FA,Br和I都能充分混合,讓析出物和缺陷減少。

使電流傳輸時不會受到材料缺陷或晶界的阻礙,光電轉換效率才會好。

要做出好的鈣鈦礦材料MAyFA1−yPb(BrxI1−x)3 必要條件之一:「降低Br和MA的摻雜濃度,盡量讓材料維持單一固溶相」。

這就是理論模擬的科學力量,預先評估一款材料設定的製程參數好不好。

如果要透過實驗方法窮舉出上述的最佳化原則,不僅金錢花費巨大,時間成本也相當高。

包淳偉與研究團隊透過近年熱門的機器學習技術,建立了模擬材料系統的神經網路模型,因為神經網路快速運算的特性,大幅降低花費時間和成本,並且模擬結果相當準確。

包淳偉團隊從簡單的化合物模擬開始,終於在2021年成功發表複雜鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 的最佳化條件,成果發表在權威期刊《JournalofPhysicalChemistryLetters》。

目前除了繼續改善神經網路模型之外,也開始和其他國外研究團隊合作解決混合複雜元素的材料系統問題,例如高熵合金。

最近包淳偉團隊與香港研究團隊在《自然》期刊發表了一種超彈性高熵合金,而包淳偉團隊也正在使用機器學習輔助原子尺度模擬來研究它有趣的塑性變形性質。

要做出好的材料,結構、製程與性質缺一不可,機器學習輔助的模擬方法可以幫助科學家快速找到最低能量的結構,這是傳統模擬方法無法做到的。

目前除了繼續改善神經網路模型之外,最近包淳偉團隊與香港研究團隊在《自然》期刊發表了一種超彈性高熵合金,而包淳偉團隊也正在使用機器學習輔助的原子尺度模擬來研究它有趣的塑性變形性質。

圖/研之有物註解註1:原子走一個步階的意思是:原子從某個位能井跳到下一個位能井。

註2:此為研究團隊早期模擬MAPbI3 的成果,之後的神經網路模型效率更好。

延伸閱讀機器學習與材料廚神的神祕Recipe應用人工神經網路勢能場研究複雜鈣鈦礦材料微觀結構見微知著─分子模擬的應用AhighlydistortedultraelasticchemicallycomplexElinvaralloyExplorationofthecompositionalspaceformixedleadhalogenperovskitesforhighefficiencysolarcellsIsmachinelearningredefiningtheperovskitesolarcells?MicrostructureMapsofComplexPerovskiteMaterialsfromExtensiveMonteCarloSamplingUsingMachineLearningEnabledEnergyModelMolecularDynamicsSimulationforAll數感宇宙探索課程,現正募資中!相關標籤:光電轉換效率太陽能發電材料科學機器學習皮爾森相關性矩陣鈣鈦礦熱門標籤:大麻量子力學CT值女科學家後遺症文章難易度剛好太難所有討論 4登入與大家一起討論#1samlin-case2022/06/11回覆高知識份子的疫苗猶豫,也來自於科學研究的可怕,實驗數據是可被「人為篩選」(研博的應該可以理解),更可被「人為隱藏」(隱性的特殊案例),這兩個人為的重大問題,是疫苗猶豫的最根本來源。

#2全台外約喝茶籟043821外約蘿莉學生清純18歲台北外約模特兼職Telegram:av85262022/06/12回覆#台灣外約援交籟043821#熱門糖小兮茶莊”喝茶找小姐*交友約炮*一夜情“高中處女”高顏空姐*貧乳學生妹*“凱渥模特麻豆”淡江校花“吃魚喝茶”人妻熟女*舒壓解憂”約小姐尋求快樂”《Telegram:av8526官網http://www.ppp8669.com》#3全台外約喝茶籟043821外約蘿莉學生清純18歲台北外約模特兼職Telegram:av85262022/06/12回覆#台灣外約援交籟043821#熱門糖小兮茶莊”喝茶找小姐*交友約炮*一夜情“高中處女”高顏空姐*貧乳學生妹*“凱渥模特麻豆”淡江校花“吃魚喝茶”人妻熟女*舒壓解憂”約小姐尋求快樂”《Telegram:av8526官網http://www.ppp8669.com》#4全台外約喝茶籟043821外約蘿莉學生清純18歲台北外約模特兼職Telegram:av85262022/06/12回覆#台灣外約援交籟043821#熱門糖小兮茶莊”喝茶找小姐*交友約炮*一夜情“高中處女”高顏空姐*貧乳學生妹*“凱渥模特麻豆”淡江校花“吃魚喝茶”人妻熟女*舒壓解憂”約小姐尋求快樂”《Telegram:av8526官網http://www.ppp8669.com》研之有物│中央研究院34篇文章・ 194位粉絲+追蹤研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。

探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。

網頁:研之有物臉書:研之有物@FacebookRELATED相關文章【2003諾貝爾化學獎】細胞膜的分子通道【2002諾貝爾化學獎】質譜與核磁共振關注大麻合法化,先了解大麻的大小事調香師的秘密:「糞臭素」挑起你骯髒的慾望TRENDING熱門討論即時熱門解開古代魚類耳朵裡的「石頭」秘密!專訪古生物學家林千翔11小時前機器學習×鈣鈦礦材料:讓AI設計太陽能電池!41小時前【2003諾貝爾化學獎】細胞膜的分子通道11小時前物聯網世代資安保護的熱門選擇——新型「加密金鑰」PUF技術11小時前科學宅的戀愛契機:「同類交配」理論624小時前思考別人沒有想到的東西——誰發現量子力學?52022/06/03時間是甚麼?國內物理學家與哲學家怎麼看?45天前一生可以聆聽的聲音總量是註定的?戴上你的聽力計算機!32022/05/21



請為這篇文章評分?