Numbers and Number Systems - Britannica Kids

文章推薦指數: 80 %
投票人數:10人

A number is a basic unit of mathematics. Numbers are used for counting, measuring, and comparing amounts. A number system is a set of symbols, or numerals, ... Articles Animals FineArts LanguageArts Places PlantsandOtherLivingThings ScienceandMathematics SocialStudies SportsandHobbies WorldReligions Images&Video Animals FineArts LanguageArts Places PlantsandOtherLivingThings ScienceandMathematics SocialStudies SportsandHobbies WorldReligions AnimalKingdom AmphibiansandReptiles Birds ExtinctAnimals Fish InsectsandOtherArthropods Mammals Mollusks OtherSeaAnimals Activities Biographies Dictionary CompareCountries WorldAtlas Podcast SwitchLevel Kids Students Scholars AboutUs kids Kids Students Scholars Fundamentals NEW 7-dayfreetrial Search Login Articles FeaturedArticle nationalpark AllCategories Animals FineArts LanguageArts Places PlantsandOtherLivingThings ScienceandMathematics SocialStudies SportsandHobbies WorldReligions Images&Videos FeaturedMedia ToyStory AllCategories Animals FineArts LanguageArts Places PlantsandOtherLivingThings ScienceandMathematics SocialStudies SportsandHobbies WorldReligions AnimalKingdom FeaturedAnimal clownfish AllCategories AmphibiansandReptiles Birds ExtinctAnimals Fish InsectsandOtherArthropods Mammals Mollusks OtherSeaAnimals Activities FeaturedActivity Categories K-2 3-5 ExperienceMore Biographies Dictionary CompareCountries WorldAtlas Podcast × Print Email Cite   × × RelatedArticles Introduction Anumberisabasicunitofmathematics.Numbersareusedforcounting,measuring,andcomparingamounts.Anumbersystemisasetofsymbols,ornumerals,thatareusedtorepresentnumbers.Themostcommonnumbersystemuses10symbolscalleddigits—0,1,2,3,4,5,6,7,8,and9—andcombinationsofthesedigits. KindsofNumbersNumberscanbeclassifiedinmanyways.Thesimplestclassisthenatural,orcounting,numbers(1,2,3,…).Withtheadditionof0,theseareknownasthewholenumbers.Thenaturalnumbersarealsocalledpositivenumbersbecausetheyaregreaterthan0.Foreachofthepositivenumbers,thereisalsoanegativenumber(−1,−2,−3,…).Negativenumbersarelessthan0.Thenaturalnumbers,theirnegativeequivalents,and0makeupthesetofnumberscalledintegers.Theintegerscanbepicturedaspointsonalinethatcontinuesforeverinbothdirections.Fractionsarenumbersthatrepresentpartsofawhole.Fractionsarewrittenasdigitsseparatedbyaline,asin3/4.Thedigitbelowthelineiscalledthedenominator.Thedigitabovethelineiscalledthenumerator.Inreadingafraction,thenumeratorisstatedfirst.Forexample,3/4isreadas“three-fourths.”Fractionscanbeshownonanumberline,too.Fractionscanalsobewritteninaformcalleddecimals.Decimalsarewrittenusingthedigits(0–9)alongwithadotcalledadecimalpoint.Afractioncanbechangedtoadecimalbydividingthenumeratorbythedenominator.Inthisway,3/4canbechangedtothedecimal0.75. AncientNumberSystemsThefirstsystemofnumberswasprobablythetallysystem.Inthissystemaseparatemarkwasmadeforeveryitembeingcounted.Thissystemwasusefulonlywithsmallnumbers.TheancientEgyptiansdevelopedacomplexsystemforwritinglargenumbersinsymbolscalledhieroglyphics.Therewasasinglehieroglyphicsymbolforthenumber1,000.Buttowritethenumber999,itwasnecessarytowritethesymbolfor100ninetimes,thenthesymbolfor10ninetimes,andfinallythesymbolfor1ninetimes.TheancientRomansusedletterstorepresentnumbers—Ifor1,Vfor5,Xfor10,Lfor50,Cfor100,Dfor500,andMfor1,000.ThissystemisknownasRomannumerals.InRomannumerals,256iswrittenasCCLVI. Base-tenandOtherSystemsThemostcommonnumbersystemusedtodayiscalledthebase-ten,ordecimal,system.Ithas10digits(0–9)thatcanbecombinedtowriteanynumber.Thebase-tensystemwasinventedbyHindusinancientIndia.Later,Arabsimprovedthesystem.Forthisreasonthedigits0–9arecalledHindu-Arabicnumerals.Inthebase-tensystem,thevalueofeachdigitisbasedonitsposition,or“place,”inanumber.Thereisa“onesplace,”a“tensplace,”a“hundredsplace,”andsoforth.Inthenumber456,forexample,the4isinthehundredsplace,the5isinthetensplace,andthe6isintheonesplace.Writteninanotherway,thenumber456actuallyrepresents(4×100)+(5×10)+(6×1).Forsomepurposesothernumbersystemsaremoreusefulthanbase-ten.Forexample,computersusethebase-two,orbinary,numbersystem.Insteadof10digits,thissystemusesonlytwo—0and1.Inacomputerthesenumbersstandfor“off”and“on,”theonlytwopossiblestatesofthecomputer’selectricswitches. Print(SubscriberFeature) Email(SubscriberFeature) Translate(SubscriberFeature) Cite(SubscriberFeature) × It’shere:theNEWBritannicaKidswebsite! We’vebeenbusy,workinghardtobringyounewfeaturesandanupdateddesign.WehopeyouandyourfamilyenjoytheNEWBritannicaKids.Takeaminutetocheckoutalltheenhancements! Thesamesafeandtrustedcontentforexplorersofallages. Accessibleacrossalloftoday'sdevices:phones,tablets,anddesktops. Improvedhomeworkresourcesdesignedtosupportavarietyofcurriculumsubjectsandstandards. Anew,thirdlevelofcontent,designedspeciallytomeettheadvancedneedsofthesophisticatedscholar. Andsomuchmore! Wanttoseeitinaction? Takeatour Startafreetrial Subscribenow! × E-mail To Recipients Pleaseenteravalidemailaddress. Tosharewithmorethanoneperson,separateaddresseswithacomma From SenderName Pleaseenteryourname. SenderEmail Pleaseenteravalidemailaddress. Cancel Submit Translatethispage Choosealanguagefromthemenuabovetoviewacomputer-translatedversionofthispage.Pleasenote:Textwithinimagesisnottranslated,somefeaturesmaynotworkproperlyaftertranslation,andthetranslationmaynotaccuratelyconveytheintendedmeaning.Britannicadoesnotreviewtheconvertedtext. Aftertranslatinganarticle,alltoolsexceptfontup/fontdownwillbedisabled.Tore-enablethetoolsortoconvertbacktoEnglish,click"vieworiginal"ontheGoogleTranslatetoolbar. AboutUs ContactUs PrivacyNotice TermsofUse ©2021EncyclopædiaBritannica,Inc. Bycontinuingtousethissite,youconsenttothetermsofourcookiepolicy,whichcanbefoundinourPrivacyNotice. ×



請為這篇文章評分?