積分表
文章推薦指數: 80 %
函數 · 極限論 · 微分學 · 積分 · 微積分基本定理; 微積分發現權之爭(英語:Leibniz–Newton calculus controversy). 基礎概念(含極限論和級數論) ... Forfasternavigation,thisIframeispreloadingtheWikiwandpagefor積分表. 積分表 Connectedto: {{::readMoreArticle.title}} 維基百科,自由的百科全書 {{bottomLinkPreText}} {{bottomLinkText}} ThispageisbasedonaWikipediaarticlewrittenby contributors(read/edit). Textisavailableunderthe CCBY-SA4.0license;additionaltermsmayapply. Images,videosandaudioareavailableundertheirrespectivelicenses. Coverphotoisavailableunder{{::mainImage.info.license.name||'Unknown'}}license. Coverphotoisavailableunder{{::mainImage.info.license.name||'Unknown'}}license. Credit: (seeoriginalfile). 積分表 Introduction 含有'"`UNIQ--postMath-00000001-QINU`"'的積分 含有'"`UNIQ--postMath-00000008-QINU`"'的積分 含有'"`UNIQ--postMath-00000012-QINU`"'的積分 含有'"`UNIQ--postMath-00000015-QINU`"'的積分 含有'"`UNIQ--postMath-00000017-QINU`"'的積分 含有'"`UNIQ--postMath-00000019-QINU`"'的積分 含有'"`UNIQ--postMath-00000022-QINU`"'的積分 含有'"`UNIQ--postMath-00000024-QINU`"'的積分 含有'"`UNIQ--postMath-0000002D-QINU`"'的積分 含有三角函數的積分 含有反三角函數的積分 含有指數函數的積分 含有對數函數的積分 含有雙曲函數的積分 定積分 {{current.index+1}}of{{items.length}} Date:{{current.info.dateOriginal||'Unknown'}} Date:{{(current.info.date|date:'mediumDate')||'Unknown'}} Credit: Uploadedby:{{current.info.uploadUser}}on{{current.info.uploadDate|date:'mediumDate'}} License:{{current.info.license.usageTerms||current.info.license.name||current.info.license.detected||'Unknown'}} License:{{current.info.license.usageTerms||current.info.license.name||current.info.license.detected||'Unknown'}} ViewfileonWikipedia Suggestascoverphoto Wouldyouliketosuggestthisphotoasthecoverphotoforthisarticle? Yes,thiswouldmakeagoodchoice No,nevermind Thankyouforhelping! Yourinputwillaffectcoverphotoselection,alongwithinputfromotherusers. Listentothisarticle Thanksforreportingthisvideo! {{result.lang}} {{result.T}} Nomatchingarticlesfound Searchforarticlescontaining:{{search.query}} ThisbrowserisnotsupportedbyWikiwand:(Wikiwandrequiresabrowserwithmoderncapabilitiesinordertoprovideyouwiththebestreadingexperience.Pleasedownloadanduseoneofthefollowingbrowsers: Chrome11+ Firefox4+ Safari6.1.2+ InternetExplorer10+ AnextensionyouusemaybepreventingWikiwandarticlesfromloadingproperly. Ifyou'reusingHTTPSEverywhereoryou'reunabletoaccessanyarticleonWikiwand,pleaseconsiderswitchingtoHTTPS(https://www.wikiwand.com). SwitchWikiwandtoHTTPS AnextensionyouusemaybepreventingWikiwandarticlesfromloadingproperly. IfyouareusinganAd-Blocker,itmighthavemistakenlyblockedourcontent. YouwillneedtotemporarilydisableyourAd-blockertoviewthispage. ✕ Thisarticlewasjustedited,clicktoreload ThisarticlehasbeendeletedonWikipedia(Why?) Backtohomepage PleaseclickAddinthedialogabove PleaseclickAllowinthetop-leftcorner,thenclickInstallNowinthedialog PleaseclickOpeninthedownloaddialog,thenclickInstall Pleaseclickthe"Downloads"iconintheSafaritoolbar,openthefirstdownloadinthelist,thenclickInstall {{::$root.activation.text}} InstallWikiwand InstallonChrome InstallonFirefox Don'tforgettorateus TellyourfriendsaboutWikiwand! Gmail Facebook Twitter Link EnjoyingWikiwand? Tellyourfriendsandspreadthelove: ShareonGmail ShareonFacebook ShareonTwitter ShareonBuffer {{::lang.langAbbreviation}} {{::lang.langEnglishName}}-{{::lang.langNativeName}} Yourpreferredlanguages {{::lang.NameEnglish}}-{{::lang.NameNative}} Alllanguages {{::lang.NameEnglish}}-{{::lang.NameNative}} FollowUs Don'tforgettorateus Ourmagicisn'tperfect Youcanhelpourautomaticcoverphotoselectionbyreportinganunsuitablephoto. Thisphotoisvisuallydisturbing Thisphotoisnotagoodchoice Thankyouforhelping! Yourinputwillaffectcoverphotoselection,alongwithinputfromotherusers. Ohno,there'sbeenanerror [email protected] Letusknowwhatyou'vedonethatcausedthiserror,whatbrowseryou'reusing,andwhetheryouhaveanyspecialextensions/add-onsinstalled. Thankyou!
延伸文章資訊
- 1指數函數積分表- 維基百科,自由的百科全書
∫ e c x d x x = ln | x | + ∑ i = 1 ∞ ( c x ) i i ⋅ i ! {\displaystyle \int {\frac {e^{cx}\;dx}{...
- 2單元32: 指數與對數積分(課本x5.3)
經濟系微積分(98學年度) ... x] = e x. 故根據不定積分的定義得證. (2) 廣義積分指數律: 對於指數函數的合成函數, ... dx 表成微分式du, 形成對u 的積分, 再.
- 3HPM通訊第六卷第五期
這個微分公式就是:ex不論對x微分幾次,結果都還是ex,一絲不變! ... 折磨人的嚴謹性,一起來感受一下Newton與Leibniz創造微積分之後,屬於數學界的大航海時代精神:.
- 4PART 11:非歐拉數為底之指數函數
我們知道微分{e^x} 等於自己,也就是\frac{{d{e^x}}}{{dx}} = {e^x} 最簡單的微分題型, ; 使用對數微分法可以算出非歐拉數為底的指數函數\frac{{d{a^x}...
- 5自然底數e 的定義(上) - 昌小澤的秘密基地- 痞客邦
上周和S 閒聊時無意間聊到自然底數e (又稱尤拉常數) 就我們從高中第一次 ... (廢話微積分課本裡用了一個不好找微分的方式來定義e^x 這豈不是拿石頭砸 ...