偏微分方程 - Wikiwand
文章推薦指數: 80 %
偏微分方程(英語:partial differential equation,縮寫作PDE)指含有未知函數及其偏導數的方程。
描述自變量、未知函數及其偏導數之間的關係。
Forfasternavigation,thisIframeispreloadingtheWikiwandpagefor偏微分方程.
偏微分方程
Connectedto:
{{::readMoreArticle.title}}
維基百科,自由的百科全書
{{bottomLinkPreText}}
{{bottomLinkText}}
ThispageisbasedonaWikipediaarticlewrittenby
contributors(read/edit).
Textisavailableunderthe
CCBY-SA4.0license;additionaltermsmayapply.
Images,videosandaudioareavailableundertheirrespectivelicenses.
Coverphotoisavailableunder{{::mainImage.info.license.name||'Unknown'}}license.
Coverphotoisavailableunder{{::mainImage.info.license.name||'Unknown'}}license.
Credit:
(seeoriginalfile).
偏微分方程
Introduction
記號及例子
拉普拉斯方程
泊松方程
波動方程式
熱傳導方程式
適定問題
分類
一階偏微分方程
二階偏微分方程
混合形式方程
解析法解偏微分方程
分離變量法
特徵線法
積分變換
變量變換
基本解
疊加原理
數值法解偏微分方程
參考文獻
{{current.index+1}}of{{items.length}}
Date:{{current.info.dateOriginal||'Unknown'}}
Date:{{(current.info.date|date:'mediumDate')||'Unknown'}}
Credit:
Uploadedby:{{current.info.uploadUser}}on{{current.info.uploadDate|date:'mediumDate'}}
License:{{current.info.license.usageTerms||current.info.license.name||current.info.license.detected||'Unknown'}}
License:{{current.info.license.usageTerms||current.info.license.name||current.info.license.detected||'Unknown'}}
ViewfileonWikipedia
Suggestascoverphoto
Wouldyouliketosuggestthisphotoasthecoverphotoforthisarticle?
Yes,thiswouldmakeagoodchoice
No,nevermind
Thankyouforhelping!
Yourinputwillaffectcoverphotoselection,alongwithinputfromotherusers.
Listentothisarticle
Thanksforreportingthisvideo!
{{result.lang}}
{{result.T}}
Nomatchingarticlesfound
Searchforarticlescontaining:{{search.query}}
ThisbrowserisnotsupportedbyWikiwand:(Wikiwandrequiresabrowserwithmoderncapabilitiesinordertoprovideyouwiththebestreadingexperience.Pleasedownloadanduseoneofthefollowingbrowsers:
Chrome11+
Firefox4+
Safari6.1.2+
InternetExplorer10+
AnextensionyouusemaybepreventingWikiwandarticlesfromloadingproperly.
Ifyou'reusingHTTPSEverywhereoryou'reunabletoaccessanyarticleonWikiwand,pleaseconsiderswitchingtoHTTPS(https://www.wikiwand.com).
SwitchWikiwandtoHTTPS
AnextensionyouusemaybepreventingWikiwandarticlesfromloadingproperly.
IfyouareusinganAd-Blocker,itmighthavemistakenlyblockedourcontent.
YouwillneedtotemporarilydisableyourAd-blockertoviewthispage.
✕
Thisarticlewasjustedited,clicktoreload
ThisarticlehasbeendeletedonWikipedia(Why?)
Backtohomepage
PleaseclickAddinthedialogabove
PleaseclickAllowinthetop-leftcorner,thenclickInstallNowinthedialog
PleaseclickOpeninthedownloaddialog,thenclickInstall
Pleaseclickthe"Downloads"iconintheSafaritoolbar,openthefirstdownloadinthelist,thenclickInstall
{{::$root.activation.text}}
InstallWikiwand
InstallonChrome
InstallonFirefox
Don'tforgettorateus
TellyourfriendsaboutWikiwand!
Gmail
Facebook
Twitter
Link
EnjoyingWikiwand?
Tellyourfriendsandspreadthelove:
ShareonGmail
ShareonFacebook
ShareonTwitter
ShareonBuffer
{{::lang.langAbbreviation}}
{{::lang.langEnglishName}}-{{::lang.langNativeName}}
Yourpreferredlanguages
{{::lang.NameEnglish}}-{{::lang.NameNative}}
Alllanguages
{{::lang.NameEnglish}}-{{::lang.NameNative}}
FollowUs
Don'tforgettorateus
Ourmagicisn'tperfect
Youcanhelpourautomaticcoverphotoselectionbyreportinganunsuitablephoto.
Thisphotoisvisuallydisturbing
Thisphotoisnotagoodchoice
Thankyouforhelping!
Yourinputwillaffectcoverphotoselection,alongwithinputfromotherusers.
Ohno,there'sbeenanerror
[email protected]
Letusknowwhatyou'vedonethatcausedthiserror,whatbrowseryou'reusing,andwhetheryouhaveanyspecialextensions/add-onsinstalled.
Thankyou!
延伸文章資訊
- 1第14 章偏導數(Partial Derivatives) 14.1 多變數函數(Functions ...
若u = f(x1,x2,··· ,xn) 為n 變數函數, 則對變數xi 的偏微分定義為. ∂u. ∂xi. = lim h→0 f(x1,··· ,xi−1,xi + h, xi+1,......
- 2偏微分- 維基百科,自由的百科全書
在數學中,偏微分(英語:partial derivative)的定義是:一個多變量的函數(或稱多元函數),對其中一個變量(導數)微分,而保持其他變量恆定。 偏微分的作用與價值在 ...
- 3單元45: 偏導函數
單元45: 偏導函數. <j> (a) e y 為常數, 對x 微分, 並根據微分的乘法 d則, 指數函數D對數函數的微分公式, 得f 對x 的ø. 階偏導函數 fx(x, y).
- 4[筆記]深度學習(Deep Learning)-梯度 - iT 邦幫忙
數值微分. 梯度首先要先提到微分和偏微分,在此沒有講推導部分,只敘述微分和偏微分在這的用處 ...
- 5偏微分 - 中央研究院
偏微分方程(Partial Differential Equa- tions, PDE), 這是連續數學的核心, 在科學. 上有廣泛的應用, 同時也是公認的一門困難. 的學科。 PDE 難, 是...