Law of Large Numbers - Statistics By Jim
文章推薦指數: 80 %
The law of large numbers states that as the number of trials increases, sample values tend to converge on the expected result. The two forms of this law lay ... SkiptosecondarymenuSkiptomaincontentSkiptoprimarysidebar Thelawoflargenumbersstatesthatasthenumberoftrialsincreases,samplevaluestendtoconvergeontheexpectedresult.Thetwoformsofthislawlaythefoundationforbothstatisticsandprobabilitytheory. Inthispost,Iexplainbothformsofthelaw,simulatetheminaction,andexplainwhythey’recrucialforstatisticsandprobability! WeakLawofLargeNumbers Therearetwoformsofthelawoflargenumbers,butthedifferencesareprimarilytheoretical.Theweakandstronglawsoflargenumbersbothapplytoasequenceofvaluesforindependentandidenticallydistributed(i.i.d.)randomvariables:X1, X2, …, Xn. Theweaklawoflargenumbersstatesthatasnincreases,thesamplestatisticofthesequenceconvergesinprobabilitytothepopulationvalue.TheweaklawoflargenumbersisalsoknownasKhinchin’slaw. Here’swhatthatmeans.Supposeyouspecifyanonzerodifferencebetweenthetheoreticalvalueandthesamplevalue.Forexample,youmightdefineadifferencebetweenthetheoreticalprobabilityforcointossresults(0.50)andtheactualproportionyouobtainovermultipletrials.Asthenumberoftrialsincreases,theprobabilitythattheactualdifferencewillbesmallerthanthispredefineddifferencealsoincreases.Thisprobabilityconvergeson1asthesamplesizeapproachesinfinity. Thisideaappliesevenwhenyoudefinetinydifferencesbetweentheactualandexpectedvalues.Youjustneedalargersample! StrongLawofLargeNumbers Thestronglawoflargenumbersdescribeshowasamplestatisticconvergesonthepopulationvalueasthesamplesizeorthenumberoftrialsincreases.Forexample,thesamplemeanwillconvergeonthepopulationmeanasthesamplesizeincreases.ThestronglawoflargenumbersisalsoknownasKolmogorov’sstronglaw. Bothlawsapplytovariouscharacteristics,rangingfromthemeansforcontinuousvariablestotheproportionsforBernoullitrials.I’llsimulatebothofthesescenariosnext! SimulationsfortheLawofLargeNumbers Whiletherearemathematicalproofsforbothlawsoflargenumbers,Iwillsimulatethemusingmyfavoriterandomsamplingprogram,Statistics101!Youcandownloaditforfree. HerearemyscriptsfortheIQexampleandthecointossexample.Youcanperformthesimulationsyourselfandseetheresults.IincludeexamplegraphsbelowthatIcreatedusingthesescripts.IexportedthedataintoExcelforprettiergraphs,butStatistics101producesgraphstoo.Yoursimulationswon’tmatchmine,buttheyshouldfollowthesameoverallpatternthatIdiscuss. IQExample Imaginethatwe’restudyingIQscores.Wearerandomlyselecting100participantsandmeasuringtheirIQs.Aswegathersubjects,we’llassesstheirIQandthenrecalculatethesamplemeanwitheachadditionalperson.Thisprocessproducesasequenceofsamplemeansasthesamplesizeincreasesfrom1to100.Ifthelawoflargenumbersholdstrue,we’dexpectthesamplemeanstoconvergeonthepopulationmeanasthesamplesizeincreases.Let’ssee! Forthispopulation,I’lldefinethepopulationdistributionofIQscoresasfollowinganormaldistributionwithameanof100andastandarddeviationof15. Asyoucansee,thesamplemeansconvergeonthepopulationmeanIQvalueof100.Atthebeginningofthesequence,they’remoreerratic,buttheystabilizeandconvergeonthecorrectvalueasthesamplesizeincreases. CoinFlippingExample Now,let’slookatcoinflips.ThisisaBernoulliTrialbecausetherearepreciselytwooutcomes,headsortails.Thedataarebinaryandfollowthebinomialdistributiondefinedbyaproportionofevents.Forthisscenario,we’lldefineaneventasheadsinthecointoss.Acointossisonetrial.Thelawoflargenumberspredictsthatasthenumberoftrialsincreases,theproportionwillconvergeontheexpectedvalueof0.50. Itworks!Thesampleproportionbecomemorestableandconvergesontheexpectedprobabilityvalueof0.50asthesamplesizeincreases. PracticalImplicationsoftheLawofLargeNumbers Thelawoflargenumbersisessentialtobothstatisticsandprobabilitytheory. Forstatistics,bothlawsoflargenumbersindicatethatlargersamplesproduceestimatesthatareconsistentlyclosertothepopulationvalue.Thesepropertiesbecomeimportantininferentialstatistics,whereyouusesamplestoestimatethepropertiesofpopulations.That’swhyyoualwayshearstatisticianssayingthatlargesamplesizesarebetter! Relatedpost:InferentialversusDescriptiveStatistics Inprobabilitytheory,asthenumberoftrialsincreases,therelativefrequencyofobservedeventswillconvergeontheexpectedprobabilityvalue.Ifyouflipacoinfourtimes,it’snotsurprisingtogetthreeheads(75%).However,after100coinflips,thepercentagewillbeextremelycloseto50%. Theselawsbringatypeofordertorandomevents.Forexample,ifyou’retalkingaboutflippingcoins,rollingdice,orgamesofchance,youaremorelikelytoobserveanunusualsequenceofeventsovertheshortrun.However,asthenumberoftrialsgrows,theoveralloutcomesconvergeontheexpectedprobability. Consequently,casinoswithalargevolumeoftrafficcanpredicttheirearningsforgamesofchance.Theirearningswillconvergeonapredictablepercentageoveralargenumberofgames.Youmightbeatthehousewithseveralluckyhands,butinthelongrun,thehousealwayswins! Relatedpost:FundamentalsofProbability WhentheLawsofLargeNumbersFail Therearespecificsituationswherethelawsoflargenumberscanfailtoconvergeontheexpectedvalueasthesamplesizeorthenumberoftrialsincrease.WhenthedatafollowtheCauchydistribution,thenumberscan’tconvergeonanexpectedvaluebecausetheCauchydistributiondoesnothaveanexpectedvalue. Similarly,thelawsdon’tapplytotheParetodistributionbecauseitsexpectedvalueisinfinite. Sharethis:Tweet Related ReaderInteractionsComments HelloJim, DoestheLawofLargenumbersalsoappliestodependentevents?I’mcuriousaboutthisbecauseofMarkovChains.MarkovChainsusessemi-dependenteventsorstateswhencalculatingtheprobabilityofmovingfromonestatetothenextstate.Anotherexamplecouldbethestandardsplayingcards,likewhat’stheprobabilityofgettingtwoAcesinarowoveralargenumberofsamples.Ireadsomewherethatthislawcouldalsoapplytodependentevents.Isthistrue?Thankyouandhaveagoodday. Sincerely, Emikel Reply HiEmikel, Ibelieveitcanapplyinthosecasesbutyouhavetobecarefulindoingso.Youneedtoknowexactlywhatthedependentconditionisthataffectsthenextoutcome.Andthenknowthatthelawoflargenumbersappliestothatprobability.Forexample,supposeeventBhasa60%chanceofoccurringifeventAoccurs,butonlya30%chanceifeventAdoesnotoccur.Withalargenumberofopportunities,you’dexpectthattheobservedfrequencieswillcloseinonthosetheoreticalfrequencies.But,you’llneedtobecarefultoknowwhetherAoccursornotandkeeptrackoftheresultsaccordingly.Bu,withalargenumberofoutcomesyou’dexpecttheobservedfrequenciestobecloseto60%and30%,respectively. Reply Ilovethesetopicsthanksforsharing! Reply WhatareCauchydistributionandParetoDistribution? Reply CommentsandQuestionsCancelreply PrimarySidebarMeetJim I’llhelpyouintuitivelyunderstandstatisticsbyfocusingonconceptsandusingplainEnglishsoyoucanconcentrateonunderstandingyourresults. ReadMore... Searchthiswebsite BuyMyIntroductiontoStatisticseBook! New!BuyMyHypothesisTestingeBook! BuyMyRegressioneBook! SubscribebyEmailEnteryouremailaddresstoreceivenotificationsofnewpostsbyemail.SubscribeIwon'tsendyouspam.Unsubscribeatanytime. FollowMe Facebook RSSFeed Twitter Popular Latest Popular HowToInterpretR-squaredinRegressionAnalysis HowtoInterpretP-valuesandCoefficientsinRegressionAnalysis MeasuresofCentralTendency:Mean,Median,andMode NormalDistributioninStatistics MulticollinearityinRegressionAnalysis:Problems,Detection,andSolutions HowtoInterprettheF-testofOverallSignificanceinRegressionAnalysis UnderstandingInteractionEffectsinStatistics Latest Five-NumberSummary SimpleRandomSampling ConvenienceSampling SystematicSampling LognormalDistribution AStatisticalThanksgiving:GlobalIncomeDistributions Variance RecentComments TadeleonUnderstandingInteractionEffectsinStatisticsJimFrostonCentralLimitTheoremExplainedJimFrostonChebyshev’sTheoreminStatisticsChrisGibbonsonCentralLimitTheoremExplainedImanonChebyshev’sTheoreminStatistics
延伸文章資訊
- 1law of large numbers | statistics | Britannica
law of large numbers, in statistics, the theorem that, as the number of identically distributed, ...
- 2Law of large numbers - Wikipedia
In probability theory, the law of large numbers (LLN) is a theorem that describes the result of p...
- 3Law of Large Numbers - Definition, Example, Applications in ...
In statistics and probability theory, the law of large numbers is a theorem that describes the re...
- 4Laws of Large Number - an overview | ScienceDirect Topics
1The law of large numbers states that in a sequence of independent identical trials, for every ε ...
- 57.1.1 Law of Large Numbers - Probability Course
The law of large numbers has a very central role in probability and statistics. It states that if...